bet36体育在线_bet36体育投注-官网网站@ 森研究室

Publications

bet36体育在线_bet36体育投注-官网网站@ 森研究室

〒184-8588
東京都小金井市中町2-24-16

[ 電話 ]
042-388-7034
[ メール ]

Publications

  1. Lewis acid-catalyzed formal 1,3-aminomethyl migration, Shibata, S.; Amano, K.; Kojima, T. Mori, K. Chem. Commun., 2023, 59, 9976–9979.
  2. Diarylmethylamine (“Butterfly”-type amine) unit: a useful unit for the modulation of catalytic activity of aminothiourea catalysts, Ogawa, H.; Okawa, H.; Mori, K. Synlett, 2023, 1899–1904.
  3. Hydride Shift Mediated C(sp3)-H Bond Functionalization (Internal Redox Reaction), Mori, K. Akiyama, T. J. Synth. Org. Chem., 2023, 81, 582?–593.
  4. Direct access to 9/6-fused cycles via sequential hydride shift mediated double C(sp3)–H bond functionalization, Nakamura, I.; Anada, M.; Sueki, S.; Makino, K.; Mori, K. Adv. Synth. Catal., 2023, 365, 502–507.
  5. Hydride shift mediated C(sp3)–H bond functionalization starting from non-aniline/phenol type substrates: evolution into a sequential system, Mori, K.; Okawa, H. Tetrahedron Lett., 2022, 110, 154178.
  6. Access to ortho-Hydroxyphenyl Ketimines via Imine Anion-mediated Smiles Rearrangement, Jinno, S.; Senoo, T.; Mori, K. Org. Lett., 2022, 24, 4140?–4144.
  7. “Stacked-arene”-type organocatalysts: utilization of pi-pi interaction as an electron tuning tool, Yamamoto, Y.; Inoue, A.; Sakai, D.; Ootawa, Y.; Mori, K. Tetrahedron Lett., 2022, 84, 153921.
  8. Catalytic Manesium-Oppenauer oxidation reaction, Sasaki, Y.; Yokoo, K.; Mori, K. Chem. Lett., 2022, 51, 841?–844.
  9. Synthesis of C3-Symmetric Macrocyclic Triimines from Monomers having Boc-Protected Amine and Formyl Group, Moriya, Y.; Yamanaka, M.; Mori, K. Chem. Lett.,2022, 51, 217?–220.
  10. C(sp3)–H Bond Functionalization Mediated by Hydride Shift/Cyclization System (Award account), Mori, K. Bull. Chem. Soc. Jpn., 2022, 95, 296?–305.
  11. Divergent Access to Seven/Five-Membered Rings Based on [1,6]-Hydride Shift/Cyclization Process, Hoshino, D. Mori, K. Org. Lett., 2021, 23, 9403?–9407.
  12. Stereoselective synthesis of highly congested tetralin-fused spirooxindoles with hydroxy group: pseudo oxygen atom induced hydride shift/cyclization process, Sakai, D. Machida, M.; Mori, K. Tetrahedron Lett., 2021, 83, 153408.
  13. Rapid access to 3-indolyl-1-trifluoromethyl-isobenzofurans by hybrid use of Lewis/Br?nsted acid catalysts, Hoshino, D.; Mori, K. Org. Biomol. Chem., 2020, 18, 6602?–6606.
  14. Genome Mining-Based Discovery of Fungal Macrolides Modified by GPI-Ethanolamine Phosphate Transferase Homologs, Morishita, Y.; Aoki, Y.; Ito, M.; Hagiwara, D.; Kuroda, T.; Fukano, H.; Hoshino, Y.; Suzuki, M.; Taniguchi, T.; Mori, K.; Asai, T. Org. Lett., 2020, 22, 5876?–5879.
  15. Highly Stereoselective Synthesis of Fused Tetrahydropyrans via Lewis-Acid-Promoted Double C(sp3)–H Bond Functionalization, Yokoo, K.; Sakai, D.; Mori, K. Org. Lett., 2020, 22, 5801?–5805.
  16. Facile Synthesis of π-Conjugated Heteroaromatic Compounds via Weak-Base-Promoted Transition-Metal-Free C–N Coupling, Senoo, T.; Inoue, A.; Mori, K. Synthesis, 2020, 56, 1096?–1102.
  17. Expeditious Synthesis of Multi-Substituted Quinolinone Derivatives Based on Ring Recombination Strategy Yokoo, K.; Mori, K. Org. Lett.,2020, 22, 244?–248.
  18. Highly Diastereoselective Synthesis of Medium-Sized Carbocycle Fused Piperidines via Sequential Hydride Shift Triggered Double C(sp3)–H Bond Functionalization, Kataoka, M.; Otawa, Y.; Ido, N.; Mori, K.; Org. Lett. 2019, 21, 9334?–9338.
  19. Construction of Seven- and Eight-Membered Carbocycles by Lewis Acid Catalyzed C(sp3)–H Bond Functionalization, Otawa, Y.; Mori, K. Chem. Commun. 2019, 55 13856?–13859.
  20. Discovery of Fungal Polyene Macrolides via Post-Genomic Approach Reveals a Polyketide Macrocyclization by trans-Acting Thioesterase in Fungi, Morishita, Y.; Zhang, H.-P..; Taniguchi, T.; Mori, K.; Asai, T. Org. Lett., 2019, 21, 4788?–4792.
  21. Synthesis of Seven-Membered Ring Containing Difluoromethylene Unitby Sc(OTf)3-Catalyzed Activation of Single C–F Bond in CF3 Group, Hisano, N.; Kimura, D.; Mori, K. Chem. Lett. 2019, 48, 771?–774.
  22. Diastereoselective Synthesis of CF3-substituted Spiroisochromans by [1,5]-Hydride Shift/Cyclization/Intramolecular Friedel-Crafts Reaction Sequence, Tamura, R.; Kitamura, E.; Tsutsumi, R.; Yamanaka, M; Akiyama, T.; Mori, K. Org. Lett. 2019, 21, 2383?–2387.
  23. Diastereoselective Synthesis of Multisubstituted Chroman Derivatives via Iminium Formation/Morita-Baylis-Hillman Reaction/Oxa-Michael Reaction Sequence, Ido, N. Mori, K. Chem. Lett. 2019, 48, 337?–340.
  24. Expeditious Synthesis of Multisubstituted Indoles via Multiple Hydrogen Transfers, Yoshida, T. Mori, K. Chem. Commun. 2018, 54, 12686?–12689.
  25. Construction of 1,3-Dithio-Substituted Tetralins by [1,5]-Alkylthio Group Transfer Mediated Skeletal Rearrangement, Hisano, N.; Kamei, Y.; Kansaku, Y.; Yamanaka, M.; Mori, K. Org. Lett. 2018, 20, 4223?–4226.
  26. Highly Diastereoselective Synthesis of Tricyclic Fused-Pyrans by Sequential Hydride Shift Mediated Double C(sp3)–H Bond Functionalization, Mori, K.; Umehara, N.; Akiyama, T. Chem. Sci. 2018, 9, 7327?–7331.
  27. Divergent Synthesis of CF3-Substituted Polycyclic Skeltons Based on Control of Activation Site of Acid Catalysts, Yokoo, K. Mori, K.; Chem. Commun. 2018, 54, 6927?–6930.
  28. Chiral Magnesium Bisphosphate Catalyzed Asymmetric Double C(sp3)–H Bond Functionalization Based on Sequential Hydride Shift/Cyclization Process, Mori, K.; Isogai, R.; Kamei, Y.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2018, 140, 6203?–6207.
  29. Highly Diastereoselective Synthesis of Tetralin-Fused Spirooxindoles via Lewis Acid-Catalyzed C(sp3)–H Bond Functionalization, Machida, M. Mori, K. Chem. Lett. 2018, 47, 868?–871.
  30. Hf(OTf)4-Catalyzed highly diastereoselective synthesis of 1,3-disubstituted tetralin derivatives via benzylic C(sp3)–H bond functionalization, Yoshida, T. Mori, K. Chem. Commun. 2017, 53, 4319?–4322.
  31. Highly Efficient Kinetic Resolution of PHANOL by Chiral Phosphoric Acid Catalyzed Asymmetric Acylation, Mori, K.; Kishi, H.; Akiyama, T. Synthesis 2017, 365?–370.
  32. Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution, Mori, K.; Itakura, T.; Akiyama, T. Angew. Chem. Int. Ed. 2016, 55, 11642?–11646.
  33. Enantioselective Synthesis of Fused Heterocycles with Contiguous Stereogenic Centers by Chiral Phosphoric Acid Catalyzed Symmetry Breaking, Mori, K.; Miyake, A.; Akiyama, T. Chem. Commun. 2015, 51, 16107?–16110.
  34. Stronger Br?nsted Acids: Recent Progress, Akiyama, T.; Mori, K.; Chem. Rev. 2015, 115, 9277–9306.
  35. Synthesis of 3-Aryl-1-trifluoromethyltetrahydroisoquinolines by Br?nsted Acid Catalyzed C(sp3)–H Bond Functionalization, Mori, K.; Umehara, N.; Akiyama, T. Adv. Synth. Catal. 2015, 357, 901–906. (Selected as an vip and front cover article).
  36. Enantioselective Synthesis of Chiral Biaryl Chlorides/Iodides by a Chiral Phosphoric Acid Catalyzed Sequential Halogenation Strategy, Mori, K.; Kobayashi, M.; Itakura, T.; Akiyama, T. Adv. Synth. Catal. 2015, 357, 35–40.
  37. Stereoselective Construction of All Carbon Quaternary Center by Means of Chiral Phosphoric Acid: Highly Enantioselective Friedel-Crafts Reaction of Indoles with b,b-Disubstituted Nitroalkenes, Mori, K.; Wakazawa, M.; Akiyama, T. Chem. Sci. 2014, 5, 1799–1803.
  38. Double C(sp3)-H Bond Functionalization Mediated by Sequential Hydride Shift/Cyclization Process: Diastereoselective Construction of Polyheterocycles, Mori, K.; Kurihara, K.; Yabe, S.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2014, 136, 3744–3747.
  39. Expeditious Synthesis of 1-Aminoindane Derivatives Achieved by [1,4]-Hydride Shift Mediated C(sp3)-H Bond Functionalization, Mori, K.; Kurihara, K.; Akiyama, T. Chem. Commun. 2014, 50, 3729–3731.
  40. Enantioselective Fluorination of b-Ketoesters Catalyzed by Chiral Sodium Phosphate: Remarkable Enhancement of Reactivity by Simultaneous Utilization of Metal Enolate and Metal Phosphate, Mori, K.; Miyake, A.; Akiyama, T. Chem. Lett. 2014, 43, 137–139.
  41. Enantioselective Transfer Hydrogenation of Difluoromethyl Ketimines Using Benzothiazoline as a Hydrogen Donor in Combination with Chiral Phosphoric Acid, Sakamoto, T.; Horiguchi, K.; Saito, K.; Mori, K.; Akiyama, T. Asian. J. Org. Chem. 2013, 2, 943–946.
  42. Prediction of Suitable Catalyst by 1H NMR: Asymmetric Synthesis of Multisubstituted Biaryls by Chiral Phosphoric Acid Catalyzed Asymmetric Bromination, Mori, K.; Ichikawa, Y.; Kobayashi, M.; Shibata, Y.; Yamanaka, M.; Akiyama, T. Chem. Sci. 2013, 4, 4235–4239.
  43. Hydrodefluorinations of Trifluorotoluenes by LiAlH4 and TiCl4, Akiyama, T,; Atobe, K.; Shibata, M.; Mori, K. J. Fluorine. Chem. 2013, 152, 81–83.
  44. Enantioselective Synthesis of Multisubstituted Biaryl Skeleton by Chiral Phosphoric Acid Catalyzed Desymmetrization/Kinetic Resolution Sequence, Mori, K.; Ichikawa, Y.; Kobayashi, M.; Shibata, Y.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2013, 135, 3964–3970 (Highlighted in Synfacts).
  45. Kinetic Resolution in Chiral Phosphoric Acid Catalyzed Aldol Reactions: Enantioselective Robinson-Type Annulation Reactions, Yamanaka, M.; Hoshino, M.; Katoh, T.; Mori, K.; Akiyama, T. Eur. J. Org. Chem. 2012, 4508–4514.
  46. Chiral Phosphoric Acid Catalyzed Enantioselective Transfer Deuteration of Ketimines by Use of Benzothiazoline As a Deuterium Donor: Synthesis of Optically Active Deuterated Amines, Sakamoto, T.; Mori, K.; Akiyama, T. Org. Lett. 2012, 14, 3312–3315.
  47. Concise Route to 3-Arylisoquinoline Skeleton by Lewis Acid Catalyzed C(sp3)–H Bond Functionalization and Its Application to Formal Synthesis of (±)-Tetrahydropalmatine, Mori, K.; Kawasaki, T.; Akiyama, T. Org. Lett. 2012, 14, 1436–1439.
  48. Rapid Access to 3-Aryltetralin Skeleton via C(sp3)–H Bond Functionalization: Investigation on the Substituent Effect of Aromatic Ring Adjacent to C–H Bond in Hydride Shift/Cyclization Sequence, Mori, K.; Sueoka, S.; Akiyama, T. Chem. Lett. 2011, 40, 1386–1388 (Selected as an Editor’s Choice paper).
  49. Chiral Phosphoric Acid Catalyzed Transfer Hydrogenation: A Facile Synthetic Access to Highly Optically Active Trifluoromehylated Amines, Henseler, A.; Kato, M.; Mori, K.; Akiyama, T. Angew. Chem. Int. Ed. 2011, 50, 8180–8183 (Highlighted in Synfacts).
  50. Selective Activation of Enantiotopic C(sp3)–Hydrogen by Means of Chiral Phosphoric Acid: Asymmetric Synthesis of Tetrahydroquinoline Derivatives, Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166–6169 (Highlighted in Synfacts).
  51. Chiral Phosphoric Acid Catalyzed Enantioselective Synthesis of b-Amino-a,a-difluoro Carbonyl Compounds, Kashikura, W.; Mori, K.; Akiyama, T. Org. Lett. 2011, 13, 1860–1863.
  52. Expeditious Construction of a Carbobicyclic Skeleton via a sp3-C–H Functionalization: Hydride Shift from an Aliphatic Tertiary Position in an Internal Redox Process, Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 2424–2426.
  53. Chiral Br?nsted Acid-Catalyzed Asymmetric Friedel-Crafts Alkylation of Indoles with a,b-Unsaturated Ketones: Short Access to Optically Active 2- and 3-Substituted Indole Derivatives, Sakamoto, T.; Itoh, J.; Mori, K.; Akiyama, T. Org. Biomol. Chem. 2010, 8, 5448–5454.
  54. Niobium-catalyzed Activation of CF3 Group on Alkene: Synthesis of Substituted Indenes, Fuchibe, K.; Atobe, K.; Fujita, Y.; Mori, K.; Akiyama, T. Chem. Lett. 2010, 39, 867–869.
  55. Expeditious Synthesis of Benzopyrans via Lewis Acid-Catalyzed C–H Functionalization: Remarkable Enhancement of Reactivity by an Ortho Substituent, Mori, K.; Kawasaki, T.; Sueoka. S.; Akiyama, T. Org. Lett. 2010, 12, 1732–1735.
  56. Enantioselective Friedel-Crafts Alkylation of Indoles with Trifluoropyruvate Catalyzed by Chiral Phosphoric Acid, Kashikura, W.; Itoh, J.; Mori, K.; Akiyama, T. Chem. Asian J. 2010, 5, 470–472.
  57. Chiral Phosphoric Acid-Catalyzed Desymmetrization of meso-1,3-Diones:  Asymmetric Synthesis of Chiral Cyclohexenones, Mori, K.; Katoh, T.; Suzuki, T.; Noji, T.; Yamanaka, M.; Akiyama, T. Angew. Chem. Int. Ed. 2009, 48, 9652–9654 (Highlighted in Synfacts).
  58. Expedient Synthesis of N-Fused Indoles: C–F Activation and C–H Insertion Approach, Fuchibe, K.; Kaneko, T.; Mori, K.; Akiyama, T. Angew. Chem. Int. Ed. 2009, 48, 8070–8073 (VIP article).
  59. Hydrogen-Bond Control in Axially Chiral Styrenes: Selective Synthesis of Enantiomerically Pure C2-Symmetric Paracyclophanes, Mori, K.; Ohmori, K.; Suzuki, K. Angew. Chem. Int. Ed. 2009, 48, 5638–5641.
  60. Stereochemical Relay via Axially Chiral Styrene: Asymmetric Synthesis of Antibiotic, TAN-1085, Mori, K.; Ohmori, K.; Suzuki, K. Angew. Chem. Int. Ed. 2009, 48, 5633–5637 (Highlighted in Nature Chemistry).
  61. Chiral Br?nsted Acid-Catalyzed Hydrophosphonylation of Imines: DFT Study on the Effect of Substituents of Phosphoric Acid, Akiyama, T.; Morita, H.; Bachu, P.; Mori, K.; Yamanaka, M.; Hirata, T. Tetrahedron 2009, 65, 4950–4956.
  62. Enantioselective Mannich-type Annulation Reaction Catalyzed by a Chiral Phosphoric Acid Bearing (S)-Biphenol Backbone, Akiyama, T.; Katoh, T.; Mori, K.; Kanno, K. Synlett 2009, 1664–1666.
  63. Dual Functionlization of Allene: Facile Construction of Heteropolycycles Mediated by Br?nsted Acid, Mori, K.; Sueoka, S.; Akiyama, T. Chem. Lett. 2009, 38, 628–629.
  64. Expeditious Construction of Quinazolines via Br?nsted Acid Induced C–H Activation: Further Extension of “tert-Amino Effect”, Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Chem. Lett. 2009, 38, 524–525.
  65. Enantioselective Aza-Darzens Reaction Catalyzed by A Chiral Phosphoric Acid, Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. 2009, 11, 2445–2447.
  66. Enantioselective Robinson-type Annulation Reaction Catalyzed by Chiral Phosphoric Acids, Akiyama, T.; Katoh, T.; Mori, K. Angew. Chem. Int. Ed. 2009, 48, 4226–4228 (Highlighted in Synfacts).
  67. Synthesis and Stereochemical Assignment of Angucycline Antibiotic, PD-116740, Mori, K.; Tanaka, K.; Ohmori, K.; Suzuki, K. Chem. Lett. 2008
  68. Concise Total Synthesis and Structure Assignment of TAN-1085, Ohmori, K.; Mori, K.; Ishikawa, Y.; Tsuruta, H.; Kuwahara, S.; Harada, N.; Suzuki, K. Angew. Chem. Int. Ed. 2004, 43, 3167–3171
bet36体育在线_bet36体育投注-官网网站@

PAGE TOP