RELATIONS AMONG WEYL MODULES, DEMAZURE MODULES AND FINITE CRYSTALS

Katsuyuki Naoi University of Tokyo

Notation

 $\circ \mathfrak{g}$: simple Lie algebra with index set $I = \{1, \ldots, n\}$, $\circ \mathfrak{h}$: Cartan subalgebra, $\circ \alpha_1, \ldots, \alpha_n$: simple roots, $\circ \varpi_1, \ldots, \varpi_n$: fundamental weights, $\circ W$: Weyl group, $\circ \mathfrak{g} = \mathfrak{n}_+ \oplus \mathfrak{h} \oplus \mathfrak{n}_-$: triangular decomposition, $\circ P = \bigoplus_i \mathbb{Z} \varpi_i$, $P_+ = \bigoplus_i \mathbb{Z}_{>0} \varpi_i$, $\circ \{e_i, h_i, f_i \mid i \in I\}$: Chevalley generators, $\circ \widehat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}K \oplus \mathbb{C}d$: the affine Lie algebra associated to \mathfrak{g} ,

 $\circ \Lambda_0, \ldots, \Lambda_n$: fundamental weights of $\widehat{\mathfrak{g}}$, $\circ \delta$: null root of $\widehat{\mathfrak{g}}$.

Definitions

• Weyl module $W(\Lambda)$

The Lie subalgebra $\mathfrak{g}\otimes\mathbb{C}[t]\oplus\mathbb{C} d\subseteq\widehat{\mathfrak{g}}$ is called the current algebra.

Definition. For a dominant integral weight $\lambda \in P_+$, the Weyl module $W(\lambda)$ is a $\mathfrak{g} \otimes \mathbb{C}[t] \oplus \mathbb{C}d$ -module generated by an element v with the relations:

$$\mathfrak{n}_+ \otimes \mathbb{C}[t].v = 0, \ h \otimes t^s.v = \delta_{s0}\langle \lambda, h \rangle v \ \text{for } h \in \mathfrak{h}, s \in \mathbb{Z}_{\geq 0},$$

$$f_i^{\langle \lambda, h_i \rangle + 1}.v = 0 \ \text{for } i \in I, \ \text{and} \ d.v = 0.$$

We denote the \mathbb{Z} -graded character of $W(\lambda)$ by

$$\operatorname{ch} W(\lambda) = \sum_{\mu \in P, m \in \mathbb{Z}} q^m e(\mu) \operatorname{dim} W(\lambda)_{\mu + m\delta}.$$

ullet Demazure module $D(\lambda,m)$ and Demazure crystal $B(\lambda,m)$

For $\lambda \in P_+$ and $m \in \mathbb{Z}$, let Λ be the unique dominant integral weight of $\widehat{\mathfrak{g}}$ such that

 $w(\Lambda) = \lambda + \Lambda_0 + m\delta$ for some element w of the affine Weyl group.

Definition. The Demazure module $D(\lambda, m)$ is the $\mathfrak{g} \otimes \mathbb{C}[t] \oplus \mathbb{C}d$ -submodule of the irreducible highest weight $\widehat{\mathfrak{g}}$ -module $V(\Lambda)$ generated by the 1-dimensional weight space $V(\Lambda)_{\lambda+\Lambda_0+m\delta}$.

It is well-known that the q-analog of $V(\Lambda)$ has a crystal basis $B(\Lambda)$, and it is also known that the q-analog of $D(\lambda, m)$ also has a crystal basis ([K1]), which is denoted by $B(\lambda, m)$ and called the *Demazure crystal*.

Crystal basis of a fundamental representation and enegy function

For $i \in I$, let $W_q(\varpi_i)$ denote the fundamental representation of the quantum affine algebra $U_q'(\widehat{\mathfrak{g}})$ defined by Kashiwara (cf. [K2]), and B_{ϖ_i} its crystal basis. When $\lambda = \sum_i \lambda_i \varpi_i$, we denote by B_{λ} the tensor product

$$B_{\lambda} = \bigotimes_{i} B_{\varpi_{i}}^{\otimes \lambda_{i}}.$$

The energy function $E_{\lambda}:B_{\lambda}\to\mathbb{Z}$ is a certain \mathbb{Z} -function defined in a combinatorial way (since its definition is a little complicated, we omit it here. See [HKOTY], for example). We define a \mathbb{Z} -grading on B_{λ} via the function $-E_{\lambda}$.

Remark. It is known that the crystal B_{λ} and the energy function E_{λ} can be realized using the Lakshmibai-Seshadri paths ([NS]). To prove the main theorem below, these realizations are essentially used.

Main Theorem

Theorem ([Na]). (1) $W(\lambda)$ has a filtration $0 = W_0 \subseteq W_1 \subseteq \cdots \subseteq W_k = 0$ $W(\lambda)$ such that each quotient W_j/W_{j+1} is isomorphic to some Demazure module $D(\mu_i, m_i)$ for $1 \leq j \leq k$.

(2) The subset $u_{\Lambda_0}\otimes B_{\lambda}$ of the crystal $B(\Lambda_0)\otimes B_{\lambda}$ (u_{Λ_0} is the highest weight element of $B(\Lambda_0)$) is isomorphic to the disjoint union of the Demazure crystals $\coprod_{1 \le j \le k} B(\mu_j, m_j)$, where μ_j and m_j are the ones in (1). Moreover, this isomorphism preserves their \mathbb{Z} -gradings.

Remark. If g is of type ADE, then k=1 and the Weyl module $W(\lambda)$ is in fact isomorphic to the Demazure module $D(\lambda,0)$. This fact was previously proved by Fourier and Littelmann [FL].

X = M conjecture

Definition. Let $\lambda, \mu \in P_+$.

The 1-dimensional sum $X(B_{\lambda}, \mu, q)$ is defined by

$$X(B_{\lambda}, \mu, q) = \sum_{\substack{b \in B_{\lambda} \\ \tilde{e}_{j}b = 0 \ (j \in I) \\ \text{wt}(b) = \mu}} q^{E_{\lambda}(b)}.$$

The fermionic form $M(\lambda,\mu,q)$ is defined as follows:

$$M(\lambda,\mu,q) = \sum_{\mathbf{m}\in S} q^{c_{\mathbf{m}}} \prod_{i\in I,k\geq 1} \begin{bmatrix} p_{k,i}^{\mathbf{m}} + m_k^{(i)} \\ m_k^{(i)} \end{bmatrix}_q,$$

where

$$S = \left\{ \mathbf{m} = (m_k^{(i)})_{\substack{i \in I \\ k \ge 1}} \left| \sum_{i \in I, k \ge 1} k m_k^{(i)} \alpha_i = \lambda - \mu \right\}, p_{k,i}^{\mathbf{m}} = \langle \lambda, h_i \rangle - \sum_{j \in I} (\alpha_i, \alpha_j) \sum_{\ell \ge 1} \min\{k, \ell\} m_\ell^{(j)},$$

$$c_{\mathbf{m}} = 2^{-1} \sum_{i,j \in I} (\alpha_i, \alpha_j) \sum_{k,\ell > 1} \min\{k, \ell\} m_k^{(i)} m_\ell^{(j)} - \sum_{i \in I, k > 1} \langle \lambda, h_i \rangle m_k^{(i)}.$$

By our main theorem, we have

$$\operatorname{ch} W(\lambda) = \sum_{1 \le j \le k} \operatorname{ch} D(\mu_j, m_j) = \sum_{1 \le j \le k} \sum_{b \in B(\mu_j, m_j)} q^{\langle d, \operatorname{wt}(b) \rangle} e(\operatorname{wt}_P(b))$$
$$= \sum_{b \in B_{\lambda}} q^{-E_{\lambda}(b)} e(\operatorname{wt}(b)) = \sum_{\mu \in P_{\lambda}} X(B_{\lambda}, \mu, q^{-1}) \operatorname{ch} V_{\mathfrak{g}}(\mu),$$

where $V_{\mathfrak{g}}(\mu)$ denotes the irreducible \mathfrak{g} -module. On the other hand, the following theorem was proved by Di Francesco and Kedem:

Theorem ([DFK]).

$$\operatorname{ch} W(\lambda) = \sum_{\mu \in P} M(\lambda, \mu, q^{-1}) \operatorname{ch} V_{\mathfrak{g}}(\mu).$$

Hence, we have the following corollary, which is a special case of the $X\,=\,M$ conjecture (cf. [HKOTY]):

Corollary. We have

$$X(B_{\lambda}, \mu, q) = M(\lambda, \mu, q).$$

Remark. The general X=M conjecture is formulated on more general crystals called the Kirillov-Reshetikhin crystals.

References [DFK] P. Di Francesco, R. Kedem, Proof of the combinatorial Kirillov-Reshetikhin conjecture, Int. Math. Res. Not., (7):Art. ID rnn006, 57, 2008.

[FL] G. Fourier, and P. Littelmann, Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions, Adv. Math., 211(2):566-593, 2007.

[HKOTY] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Y. Yamada, *Remarks on fermionic formula*, Contemporary Mathematics, vol. 248, 243-291.

[K1] M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J., 71(3):839-858, 1993.

[K2] M. Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J., 112(1):117-175, 2002.

[NS] S. Naito and D. Sagaki, Lakshmibai-Seshadri paths of level zero shape and one-dimensional sums associated to level zero fundamental representations, Compos. Math., 144(6):1525-1556, 2008.

[Na] K. Naoi, Weyl modules, Demazure modules and finite crystals for non-simply laced type, arXiv:1012.5480v3.