Minimal affinizations and their graded limits

Katsuyuki Naoi

Tokyo University of Agriculture and Technology

Cluster Algebras and Representation Theory @ CMC

November 4th, 2014

Introduction

Jacobi-Trudi formula

For a partition $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n)$,

$$s_{\lambda}(x) = \det (h_{\lambda_i - i + j}(x))_{1 \leq i, j \leq n}.$$

 $s_{\lambda}(x)$: Schur polynomial, $h_k(x)$: complete symm. polynomial.

Translation in the \mathfrak{sl}_{n+1} -modules

$$\lambda \in P^+$$
: dom. int. wt $\leadsto \lambda = (\lambda_1 \ge \cdots \ge \lambda_n)$ by $\lambda_i = \sum_{k \ge i} \langle h_k, \lambda \rangle$ ch $V(\lambda) = s_{\lambda}(x)$, ch $V(k\varpi_1) = h_k(x)$ $(V(\lambda)$: simple \mathfrak{sl}_{n+1} -mod.)

Theorem

$$\operatorname{ch} V(\lambda) = \operatorname{det} \left(\operatorname{ch} V((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i,j \leq n}$$

Introduction

Jacobi-Trudi formula

For a partition $\lambda = (\lambda_1 \geq \cdots \geq \lambda_n)$,

$$s_{\lambda}(x) = \det (h_{\lambda_i - i + j}(x))_{1 \leq i, j \leq n}.$$

 $s_{\lambda}(x)$: Schur polynomial, $h_k(x)$: complete symm. polynomial.

Translation in the \mathfrak{sl}_{n+1} -modules

$$\lambda \in P^+$$
: dom. int. wt $\leadsto \lambda = (\lambda_1 \ge \cdots \ge \lambda_n)$ by $\lambda_i = \sum_{k \ge i} \langle h_k, \lambda \rangle$ ch $V(\lambda) = s_{\lambda}(x)$, ch $V(k\varpi_1) = h_k(x)$ $(V(\lambda)$: simple \mathfrak{sl}_{n+1} -mod.)

Theorem

$$\operatorname{ch} V(\lambda) = \operatorname{det} \left(\operatorname{ch} V((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i,j \leq n}$$

Introduction

Jacobi-Trudi formula

For a partition $\lambda = (\lambda_1 \geq \cdots \geq \lambda_n)$,

$$s_{\lambda}(x) = \det (h_{\lambda_i - i + j}(x))_{1 \leq i, j \leq n}.$$

 $s_{\lambda}(x)$: Schur polynomial, $h_k(x)$: complete symm. polynomial.

Translation in the \mathfrak{sl}_{n+1} -modules

$$\lambda \in P^+$$
: dom. int. wt $\leadsto \lambda = (\lambda_1 \ge \cdots \ge \lambda_n)$ by $\lambda_i = \sum_{k \ge i} \langle h_k, \lambda \rangle$ ch $V(\lambda) = s_{\lambda}(x)$, ch $V(k\varpi_1) = h_k(x)$ $(V(\lambda)$: simple \mathfrak{sl}_{n+1} -mod.)

Theorem,

$$\operatorname{ch} V(\lambda) = \operatorname{\mathsf{det}} \Big(\operatorname{ch} V \big((\lambda_i - i + j) \varpi_1 \big) \Big)_{1 \leq i, j \leq n}$$

So ch
$$V(\lambda) = \det \left(\operatorname{ch} V((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i, i \leq n} \operatorname{holds} \underline{\operatorname{in type } A}.$$

$$\operatorname{ch} V(\lambda) \neq \operatorname{det} \left(\operatorname{ch} V((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i,j \leq n}$$

when $\mathfrak{g}
eq \mathfrak{sl}_{n+1}$ (though there may be several generalizations.)

Q. When
$$\mathfrak{g} \neq \mathfrak{sl}_{n+1}$$
, does det $\left(\operatorname{ch} V((\lambda_i - i + j)\varpi_1)\right)_{1 \leq i,j \leq n}$

have some representation theoretic meaning? Yes!

So ch
$$V(\lambda) = \det \left(\operatorname{ch} V((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i, j \leq n} \text{ holds } \underline{\text{in type } A}.$$

$$\operatorname{ch} V(\lambda) \neq \operatorname{det} \left(\operatorname{ch} V \left((\lambda_i - i + j) \varpi_1 \right) \right)_{1 \leq i, j \leq n}$$

when $\mathfrak{g} \neq \mathfrak{sl}_{n+1}$ (though there may be several generalizations.)

Q. When
$$\mathfrak{g} \neq \mathfrak{sl}_{n+1}$$
, does det $\left(\operatorname{ch} V\left((\lambda_i - i + j)\varpi_1\right)\right)_{1 \leq i,j \leq n}$

have some representation theoretic meaning? Yes!

So ch
$$V(\lambda) = \det \left(\operatorname{ch} V((\lambda_i - i + j)\varpi_1) \right)_{1 \le i, i \le n} \text{ holds } \underline{\text{in type } A}.$$

$$\operatorname{ch} V(\lambda) \neq \operatorname{det} \left(\operatorname{ch} V \left((\lambda_i - i + j) \varpi_1 \right) \right)_{1 \leq i, j \leq n}$$

when $\mathfrak{g} \neq \mathfrak{sl}_{n+1}$ (though there may be several generalizations.)

Q. When $\mathfrak{g} \neq \mathfrak{sl}_{n+1}$, does det $\left(\operatorname{ch} V\left((\lambda_i - i + j)\varpi_1\right)\right)_{1 \leq i,j \leq n}$ have some representation theoretic meaning? Yes!

So ch
$$V(\lambda) = \det \left(\operatorname{ch} V((\lambda_i - i + j)\varpi_1) \right)_{1 \le i, i \le n} \text{ holds } \underline{\text{in type } A}.$$

$$\operatorname{ch} V(\lambda) \neq \operatorname{det} \left(\operatorname{ch} V \left((\lambda_i - i + j) \varpi_1 \right) \right)_{1 \leq i, j \leq n}$$

when $\mathfrak{g} \neq \mathfrak{sl}_{n+1}$ (though there may be several generalizations.)

Q. When $\mathfrak{g} \neq \mathfrak{sl}_{n+1}$, does det $\left(\operatorname{ch} V\left((\lambda_i - i + j)\varpi_1\right)\right)_{1 \leq i,j \leq n}$

have some representation theoretic meaning? Yes!

In type BD, we have

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} V((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i, j \leq n},$$

where $L_q(\lambda)$ denotes a **minimal affinization** (a special class of f.d. simple $U_q(\mathcal{L}\mathfrak{g})$ -modules explained later).

In type C, a similar formula holds:

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \Big(\sum_{0 \leq 2k \leq \lambda_i - i + j} \operatorname{ch} V \big((\lambda_i - i + j - 2k) \varpi_1 \big) \Big)_{1 \leq i, j \leq n}.$$

In type BD, we have

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} V \left((\lambda_i - i + j) \varpi_1 \right) \right)_{1 \leq i, j \leq n},$$

where $L_q(\lambda)$ denotes a **minimal affinization** (a special class of f.d. simple $U_q(\mathcal{L}\mathfrak{g})$ -modules explained later).

In type C, a similar formula holds:

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \Big(\sum_{0 \leq 2k \leq \lambda_i - i + j} \operatorname{ch} V \big((\lambda_i - i + j - 2k) \varpi_1 \big) \Big)_{1 \leq i, j \leq n}.$$

Plan

- 1. Definition of minimal affinizations $L_q(\lambda)$
- 2. Main Theorem (JT formula for $\operatorname{ch} L_q(\lambda)$)
- 3. Proof (Combination of results proved by

[N], [Chari-Greenstein], [Sam])

In the proof, **graded limits** (\mathbb{Z} -graded $\mathfrak{g} \otimes \mathbb{C}[t]$ -modules) are used.

Plan

- 1. Definition of minimal affinizations $L_q(\lambda)$
- 2. Main Theorem (JT formula for $\operatorname{ch} L_q(\lambda)$)
- 3. Proof (Combination of results proved by

[N], [Chari-Greenstein], [Sam])

In the proof, **graded limits** (\mathbb{Z} -graded $\mathfrak{g} \otimes \mathbb{C}[t]$ -modules) are used.

Plan

- 1. Definition of minimal affinizations $L_q(\lambda)$
- 2. Main Theorem (JT formula for $\operatorname{ch} L_q(\lambda)$)
- 3. Proof (Combination of results proved by

[N], [Chari-Greenstein], [Sam])

In the proof, **graded limits** (\mathbb{Z} -graded $\mathfrak{g} \otimes \mathbb{C}[t]$ -modules) are used.

 \mathfrak{g} : simple Lie algebra of rank n,

$$\mathcal{L}\mathfrak{g}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$$
: loop algebra, $\left(\left[x\otimes f,y\otimes g\right]=\left[x,y\right]\otimes fg\right)$

$$U_q(\mathcal{L}\mathfrak{g})$$
: quantum loop algebra $/\mathbb{C}(q)$ $\left(q$ -analog of $U(\mathcal{L}\mathfrak{g})
ight)$

 $U_q(\mathfrak{g})$: quantum group assoc. with \mathfrak{g} (q-analog of $U(\mathfrak{g}))$

(Note:
$$g = g \otimes 1 \subseteq g \otimes \mathbb{C}[t, t^{-1}] = \mathcal{L}g$$
)

- $(1) \begin{tabular}{ll} \{ {\rm f.d. \ simple \ } {\mathfrak g}{\rm -mod.} \} & \stackrel{1:1}{\longleftrightarrow} P^+ \stackrel{1:1}{\longleftrightarrow} \{ {\rm f.d. \ simple \ } U_q({\mathfrak g}){\rm -mod} \} \\ & \cup & \cup & \cup \\ & V(\lambda) & \lambda & V_q(\lambda) \\ \end{tabular}$
- (2) The cat. of f.d. \mathfrak{g} -modules and $U_q(\mathfrak{g})$ -modules are semisimple.
- (3) $\operatorname{ch} V(\lambda) = \operatorname{ch} V_{a}(\lambda).$

 \mathfrak{g} : simple Lie algebra of rank n,

$$\mathcal{L}\mathfrak{g}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$$
: loop algebra, $\left(\left[x\otimes f,y\otimes g\right]=\left[x,y\right]\otimes fg\right)$

$$U_q(\mathcal{L}\mathfrak{g})$$
: quantum loop algebra $/\mathbb{C}(q)$ $\left(q$ -analog of $U(\mathcal{L}\mathfrak{g})
ight)$

$$U_q(\mathfrak{g})$$
: quantum group assoc. with \mathfrak{g} $(q$ -analog of $U(\mathfrak{g}))$

(Note:
$$\mathfrak{g} = \mathfrak{g} \otimes 1 \subseteq \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] = \mathcal{L}\mathfrak{g}$$
)

- (2) The cat. of f.d. \mathfrak{g} -modules and $U_q(\mathfrak{g})$ -modules are semisimple.
- (3) $\operatorname{ch} V(\lambda) = \operatorname{ch} V_{a}(\lambda).$

 \mathfrak{g} : simple Lie algebra of rank n,

$$\mathcal{L}\mathfrak{g}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$$
: loop algebra, $\left(\left[x\otimes f,y\otimes g\right]=\left[x,y\right]\otimes fg\right)$

$$U_q(\mathcal{L}\mathfrak{g})$$
: quantum loop algebra $/\mathbb{C}(q)$ $(q$ -analog of $U(\mathcal{L}\mathfrak{g}))$

 $U_q(\mathfrak{g})$: quantum group assoc. with \mathfrak{g} (q-analog of $U(\mathfrak{g}))$

(Note:
$$\mathfrak{g} = \mathfrak{g} \otimes 1 \subseteq \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] = \mathcal{L}\mathfrak{g}$$
)

- $(1) \quad \{\text{f.d. simple } \mathfrak{g}\text{-mod.}\} \stackrel{1:1}{\longleftrightarrow} P^+ \stackrel{1:1}{\longleftrightarrow} \{\text{f.d. simple } U_q(\mathfrak{g})\text{-mod}\}$ $V(\lambda) \qquad \qquad \lambda \qquad \qquad V_q(\lambda)$
- (2) The cat. of f.d. \mathfrak{g} -modules and $U_q(\mathfrak{g})$ -modules are semisimple.
- (3) $\operatorname{ch} V(\lambda) = \operatorname{ch} V_{a}(\lambda).$

 \mathfrak{g} : simple Lie algebra of rank n,

$$\mathcal{L}\mathfrak{g}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$$
: loop algebra, $\left(\left[x\otimes f,y\otimes g\right]=\left[x,y\right]\otimes fg\right)$

 $U_q(\mathcal{L}\mathfrak{g})$: quantum loop algebra $/\mathbb{C}(q)$ $\left(q$ -analog of $U(\mathcal{L}\mathfrak{g})
ight)$

 $U_q(\mathfrak{g})$: quantum group assoc. with \mathfrak{g} (q-analog of $U(\mathfrak{g}))$

(Note: $\mathfrak{g} = \mathfrak{g} \otimes 1 \subseteq \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] = \mathcal{L}\mathfrak{g}$)

- (2) The cat. of f.d. \mathfrak{g} -modules and $U_q(\mathfrak{g})$ -modules are semisimple.
- (3) $\operatorname{ch} V(\lambda) = \operatorname{ch} V_{a}(\lambda).$

 \mathfrak{g} : simple Lie algebra of rank n,

$$\mathcal{L}\mathfrak{g}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$$
: loop algebra, $\left(\left[x\otimes f,y\otimes g\right]=\left[x,y\right]\otimes fg\right)$

$$U_q(\mathcal{L}\mathfrak{g})$$
: quantum loop algebra $/\mathbb{C}(q)$ $(q$ -analog of $U(\mathcal{L}\mathfrak{g}))$

 $U_q(\mathfrak{g})$: quantum group assoc. with \mathfrak{g} $\left(q$ -analog of $U(\mathfrak{g})\right)$

(Note:
$$\mathfrak{g}=\mathfrak{g}\otimes 1\subseteq \mathfrak{g}\otimes \mathbb{C}[t,t^{-1}]=\mathcal{L}\mathfrak{g})$$

- (2) The cat. of f.d. \mathfrak{g} -modules and $U_q(\mathfrak{g})$ -modules are semisimple.
- (3) $\operatorname{ch} V(\lambda) = \operatorname{ch} V_{a}(\lambda).$

 \mathfrak{g} : simple Lie algebra of rank n,

$$\mathcal{L}\mathfrak{g}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$$
: loop algebra, $\left(\left[x\otimes f,y\otimes g\right]=\left[x,y\right]\otimes fg\right)$

$$U_q(\mathcal{L}\mathfrak{g})$$
: quantum loop algebra $/\mathbb{C}(q)$ $(q$ -analog of $U(\mathcal{L}\mathfrak{g}))$

 $U_q(\mathfrak{g})$: quantum group assoc. with \mathfrak{g} $\left(q$ -analog of $U(\mathfrak{g})\right)$

(Note:
$$\mathfrak{g} = \mathfrak{g} \otimes 1 \subseteq \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] = \mathcal{L}\mathfrak{g}$$
)

- (2) The cat. of f.d. g-modules and $U_q(\mathfrak{g})$ -modules are semisimple.
- (3) $\operatorname{ch} V(\lambda) = \operatorname{ch} V_a(\lambda)$.

<u>Fact.</u> V: an arbitrary f.d. simple $U_q(\mathcal{L}\mathfrak{g})$ -module

$$ightsquigarrow \exists ! \lambda \in P^+ ext{ s.t. } V \cong V_q(\lambda) \oplus igoplus_{\mu < \lambda} V_q(\mu)^{\oplus m_\mu(V)} ext{ as a } U_q(\mathfrak{g}) ext{-module}.$$

In this case, V is called an **affinization** of $V_q(\lambda)$.

$$ig\{ \mathit{U}_q(\mathfrak{g}) ext{-isom. classes of affiniz. of } V_q(\lambda) ig\} \Leftarrow$$
 partial order is defined

$$ig([V] \geq [W] \Leftrightarrow ig\{ extit{m}_{\mu}(V) ig\}_{\mu} \geq ig\{ extit{m}_{\mu}(W) ig\}_{\mu} ext{ w.r.t. lexicographic order} ig)$$

V: minimal affinization of $V_q(\lambda)$

 $\overset{\scriptscriptstyle\mathsf{def}}{\Leftrightarrow} \circ \ V$ is an affinization of $V_q(\lambda)$

 \circ the isom. class of V is minimal among affiniz. of $V_q(\lambda)$.

<u>Fact.</u> V: an arbitrary f.d. simple $U_q(\mathcal{L}\mathfrak{g})$ -module

$$ightsquigarrow {}^{\exists!}\lambda \in P^+$$
 s.t. $V \cong V_q(\lambda) \oplus igoplus_{\mu < \lambda} V_q(\mu)^{\oplus m_\mu(V)}$ as a $U_q(\mathfrak{g})$ -module.

In this case, V is called an **affinization** of $V_q(\lambda)$.

$$\left\{U_q(\mathfrak{g}) ext{-isom. classes of affiniz. of }V_q(\lambda)
ight\} \Leftarrow$$
 partial order is defined

$$ig([V] \geq [W] \Leftrightarrow ig\{ m_{\mu}(V) ig\}_{\mu} \geq ig\{ m_{\mu}(W) ig\}_{\mu}$$
 w.r.t. lexicographic order)

V: minimal affinization of $V_q(\lambda)$

 $\overset{ ext{def}}{\Leftrightarrow} \circ \ V$ is an affinization of $V_q(\lambda)$

 \circ the isom. class of V is minimal among affiniz. of $V_q(\lambda)$

<u>Fact.</u> V: an arbitrary f.d. simple $U_q(\mathcal{L}\mathfrak{g})$ -module

$$ightsquigarrow$$
 $\exists ! \lambda \in P^+$ s.t. $V \cong V_q(\lambda) \oplus \bigoplus_{\mu < \lambda} V_q(\mu)^{\oplus m_\mu(V)}$ as a $U_q(\mathfrak{g})$ -module.

In this case, V is called an **affinization** of $V_q(\lambda)$.

$$\left\{ \mathit{U}_q(\mathfrak{g}) \text{-isom. classes of affiniz. of } V_q(\lambda)
ight\} \Leftarrow \mathsf{partial}$$
 order is defined

$$ig([V] \geq [W] \Leftrightarrow ig\{m_{\mu}(V)ig\}_{\mu} \geq ig\{m_{\mu}(W)ig\}_{\mu} ext{ w.r.t. lexicographic order}ig)$$

Definition

V: minimal affinization of $V_q(\lambda)$

 $\overset{\text{def}}{\Leftrightarrow} \circ V$ is an affinization of $V_q(\lambda)$

 \circ the isom. class of V is minimal among affiniz. of $V_q(\lambda)$.

<u>Fact.</u> V: an arbitrary f.d. simple $U_q(\mathcal{L}\mathfrak{g})$ -module

$$ightsquigarrow {}^{\exists!}\lambda \in P^+$$
 s.t. $V \cong V_q(\lambda) \oplus \bigoplus_{\mu < \lambda} V_q(\mu)^{\oplus m_\mu(V)}$ as a $U_q(\mathfrak{g})$ -module.

In this case, V is called an **affinization** of $V_q(\lambda)$.

$$\left\{ \mathit{U}_q(\mathfrak{g}) \text{-isom. classes of affiniz. of } V_q(\lambda)
ight\} \Leftarrow \mathsf{partial}$$
 order is defined

$$([V] \geq [W] \Leftrightarrow ig\{m_{\mu}(V)ig\}_{\mu} \geq ig\{m_{\mu}(W)ig\}_{\mu} ext{ w.r.t. lexicographic order}ig)$$

Definition

V: minimal affinization of $V_q(\lambda)$

 $\overset{\mathsf{def}}{\Leftrightarrow} \circ V$ is an affinization of $V_q(\lambda)$

 \circ the isom. class of V is minimal among affiniz. of $V_q(\lambda)$.

Examples of Minimal affinizations

Minimal affinizations for $\mathfrak{g} = \mathfrak{sl}_{n+1}$

When
$$\mathfrak{g} = \mathfrak{sl}_{n+1}$$
, \exists alg. hom. $\varphi \colon U_q(\mathcal{L}\mathfrak{g}) \twoheadrightarrow U_q(\mathfrak{g})$ (evaluation map) (q -analog of the map $\mathcal{L}\mathfrak{g} \twoheadrightarrow \mathfrak{g} \colon x \otimes f \to f(a)x$ for any $a \in \mathbb{C}^\times$) $\rightsquigarrow \varphi^*V_q(\lambda)$: simple $U_q(\mathcal{L}\mathfrak{g})$ -mod. \Leftarrow minimal affinization of $V_q(\lambda)$ ($\because \varphi^*V_q(\lambda) \cong V_q(\lambda)$ as a $U_q(\mathfrak{g})$ -mod.)

Remark. If $g \neq \mathfrak{sl}_{n+1}$, evaluation map **does not** exist.

 \leadsto Most of minimal affinizations are reducible as a $U_q(\mathfrak{g})$ -module, and it is not easy to determine the decompositions or characters

Examples of Minimal affinizations

Minimal affinizations for $\mathfrak{g} = \mathfrak{sl}_{n+1}$

When
$$\mathfrak{g}=\mathfrak{sl}_{n+1}$$
, \exists alg. hom. $\varphi\colon U_q(\mathcal{L}\mathfrak{g}) \twoheadrightarrow U_q(\mathfrak{g})$ (evaluation map) $(q\text{-analog of the map }\mathcal{L}\mathfrak{g} \twoheadrightarrow \mathfrak{g}\colon x\otimes f \to f(a)x \text{ for any }a\in\mathbb{C}^\times)$ $\rightsquigarrow \varphi^*V_q(\lambda)$: simple $U_q(\mathcal{L}\mathfrak{g})\text{-mod.} \Leftarrow \text{minimal affinization of }V_q(\lambda)$ $(\because \varphi^*V_q(\lambda)\cong V_q(\lambda) \text{ as a }U_q(\mathfrak{g})\text{-mod.})$

Remark. If $\mathfrak{g} \neq \mathfrak{sl}_{n+1}$, evaluation map **does not** exist.

 \leadsto Most of minimal affinizations are reducible as a $U_q(\mathfrak{g})$ -module, and it is not easy to determine the decompositions or characters.

Kirillov-Reshetikhin modules
$$W_{k,a}^{(j)}$$
 $\left(1\leq j\leq n, k\in\mathbb{Z}_{\geq 0}, a\in\mathbb{C}(q)\right)$

- ferimionic character formula
- having crystal bases
- T-system ⇒ Monoidal categorification by Hernandez-Leclerc

$$0 \to W_{k,aq}^{(i-1)} \otimes W_{k,aq}^{(i+1)} \to W_{k,a}^{(i)} \otimes W_{k,aq^2}^{(i)} \to W_{k+1,a}^{(i)} \otimes W_{k-1,aq^2}^{(i)} \to 0$$

$$\longrightarrow [W_{k,aq}^{(i)}][W_{k,aq^2}^{(i)}] = [W_{k,aq}^{(i-1)}][W_{k,aq}^{(i+1)}] + [W_{k+1,a}^{(i)}][W_{k-1,aq^2}^{(i)}] \text{ in } K_0(U_q(\mathcal{L}\mathfrak{g}))$$

$$\circ \left\{W_{k,a}^{(i)} \mid a \in \mathbb{C}(q)
ight\} = \left\{ ext{minimal affinizations of } V_q(karpi_i)
ight\}$$

Kirillov-Reshetikhin modules
$$W_{k,a}^{(j)}$$
 $\left(1 \leq j \leq n, k \in \mathbb{Z}_{\geq 0}, a \in \mathbb{C}(q)\right)$

- ferimionic character formula
- having crystal bases
- T-system ⇒ Monoidal categorification by Hernandez-Leclerc

$$0 \to W_{k,aq}^{(i-1)} \otimes W_{k,aq}^{(i+1)} \to W_{k,a}^{(i)} \otimes W_{k,aq^2}^{(i)} \to W_{k+1,a}^{(i)} \otimes W_{k-1,aq^2}^{(i)} \to 0$$

$$\longrightarrow [W_{k,a}^{(i)}][W_{k,aq^2}^{(i)}] = [W_{k,aq}^{(i-1)}][W_{k,aq}^{(i+1)}] + [W_{k+1,a}^{(i)}][W_{k-1,aq^2}^{(i)}] \text{ in } K_0(U_q(\mathcal{L}\mathfrak{g}))$$

$$\circ$$
 $\left\{W_{k,a}^{(i)} \mid a \in \mathbb{C}(q)
ight\} = \left\{ ext{minimal affinizations of } V_q(karpi_i)
ight\}$

Kirillov-Reshetikhin modules
$$W_{k,a}^{(j)}$$
 $\left(1\leq j\leq n, k\in\mathbb{Z}_{\geq 0}, a\in\mathbb{C}(q)\right)$

- ferimionic character formula
- having crystal bases
- T-system ⇒ Monoidal categorification by Hernandez-Leclerc

$$0 \to W_{k,aq}^{(i-1)} \otimes W_{k,aq}^{(i+1)} \to W_{k,a}^{(i)} \otimes W_{k,aq^2}^{(i)} \to W_{k+1,a}^{(i)} \otimes W_{k-1,aq^2}^{(i)} \to 0$$

$$\leadsto [W_{k,aq}^{(i)}][W_{k,aq^2}^{(i)}] = [W_{k,aq}^{(i-1)}][W_{k,aq}^{(i+1)}] + [W_{k+1,a}^{(i)}][W_{k-1,aq^2}^{(i)}] \text{ in } K_0(U_q(\mathcal{L}\mathfrak{g}))$$

$$\circ \, \left\{ W_{k,a}^{(i)} \mid a \in \mathbb{C}(q) \right\} = \left\{ \text{minimal affinizations of } V_q(k\varpi_i) \right\}$$

Kirillov-Reshetikhin modules
$$W_{k,a}^{(j)}$$
 $\left(1\leq j\leq n, k\in\mathbb{Z}_{\geq 0}, a\in\mathbb{C}(q)\right)$

- ferimionic character formula
- having crystal bases
- T-system ⇒ Monoidal categorification by Hernandez-Leclerc

$$0 \to W_{k,aq}^{(i-1)} \otimes W_{k,aq}^{(i+1)} \to W_{k,a}^{(i)} \otimes W_{k,aq^2}^{(i)} \to W_{k+1,a}^{(i)} \otimes W_{k-1,aq^2}^{(i)} \to 0$$

$$\leadsto [W_{k,aq}^{(i)}][W_{k,aq^2}^{(i)}] = [W_{k,aq}^{(i-1)}][W_{k,aq}^{(i+1)}] + [W_{k+1,a}^{(i)}][W_{k-1,aq^2}^{(i)}] \text{ in } K_0(U_q(\mathcal{L}\mathfrak{g}))$$

$$\circ \left\{ W_{k,a}^{(i)} \mid a \in \mathbb{C}(q)
ight\} = \left\{ ext{minimal affinizations of } V_q(karpi_i)
ight\}$$

Main Theorem

In the sequel, assume that $\mathfrak g$ is of type ABCD. Let $\lambda \in P^+$, and let $L_q(\lambda)$ be a minimal affinization of $V_q(\lambda)$.

Theorem

Assume that
$$\begin{cases} \langle h_n, \lambda \rangle = 0 & \text{if } \mathfrak{g} \colon \text{type } BC, \\ \langle h_{n-1}, \lambda \rangle = \langle h_n, \lambda \rangle = 0 & \text{if } \mathfrak{g} \colon \text{type } D, \end{cases}$$
 and set $\lambda_i := \sum_{k \geq i} \langle h_k, \lambda \rangle \in \mathbb{Z}_{\geq 0} \text{ for } 1 \leq i \leq n.$ Then we have
$$\operatorname{ch} L_q(\lambda) = \begin{cases} \det \left(\operatorname{ch} V \left((\lambda_i - i + j) \varpi_1 \right) \right)_{1 \leq i, j \leq n} & \text{g: } ABD \end{cases}$$

$$= \begin{cases} \det \left(\sum_{0 \leq 2\ell \leq \lambda_i - i + j} \operatorname{ch} V \left((\lambda_i - i + j - 2\ell) \varpi_1 \right) \right)_{1 \leq i, j \leq n} & \text{g: } C \end{cases}$$

Remark. In type A, this is JT formula since $\operatorname{ch} L_q(\lambda) = \operatorname{ch} V(\lambda)$.

Main Theorem

In the sequel, assume that $\mathfrak g$ is of type ABCD.

Let $\lambda \in P^+$, and let $L_q(\lambda)$ be a minimal affinization of $V_q(\lambda)$.

Theorem

Assume that
$$\begin{cases} \langle h_n, \lambda \rangle = 0 & \text{if } \mathfrak{g} \colon \text{type } BC, \\ \langle h_{n-1}, \lambda \rangle = \langle h_n, \lambda \rangle = 0 & \text{if } \mathfrak{g} \colon \text{type } D, \end{cases}$$
 and set $\lambda_i := \sum_{k \geq i} \langle h_k, \lambda \rangle \in \mathbb{Z}_{\geq 0} \text{ for } 1 \leq i \leq n.$ Then we have
$$\operatorname{ch} L_q(\lambda) = \begin{cases} \det \left(\operatorname{ch} V \big((\lambda_i - i + j) \varpi_1 \big) \right)_{1 \leq i, j \leq n} & \mathfrak{g} \colon ABD \\ \det \left(\sum_{0 \leq 2\ell \leq \lambda_i - i + j} \operatorname{ch} V \big((\lambda_i - i + j - 2\ell) \varpi_1 \big) \right)_{1 \leq i, j \leq n} & \mathfrak{g} \colon C \end{cases}$$

Remark. In type A, this is JT formula since $\operatorname{ch} L_q(\lambda) = \operatorname{ch} V(\lambda)$.

Main Theorem

In the sequel, assume that $\mathfrak g$ is of type *ABCD*.

Let $\lambda \in P^+$, and let $L_q(\lambda)$ be a minimal affinization of $V_q(\lambda)$.

Theorem

Assume that
$$\begin{cases} \langle h_n, \lambda \rangle = 0 & \text{if } \mathfrak{g} \text{: type } BC, \\ \langle h_{n-1}, \lambda \rangle = \langle h_n, \lambda \rangle = 0 & \text{if } \mathfrak{g} \text{: type } D, \end{cases}$$
 and set $\lambda_i := \sum_{k \geq i} \langle h_k, \lambda \rangle \in \mathbb{Z}_{\geq 0} \text{ for } 1 \leq i \leq n.$ Then we have $\operatorname{ch} L_q(\lambda)$
$$= \begin{cases} \det \left(\operatorname{ch} V \big((\lambda_i - i + j) \varpi_1 \big) \right)_{1 \leq i, j \leq n} & \mathfrak{g} \text{: } ABD \end{cases}$$

$$\det \left(\sum_{0 \leq 2\ell \leq \lambda_i - i + j} \operatorname{ch} V \big((\lambda_i - i + j - 2\ell) \varpi_1 \big) \right)_{1 \leq i, j \leq n} & \mathfrak{g} \text{: } C$$

Remark. In type A, this is JT formula since $\operatorname{ch} L_q(\lambda) = \operatorname{ch} V(\lambda)$.

Remark. For $k \in \mathbb{Z}_{>0}$, it holds that

$$L_{q}(k\varpi_{1}) \cong_{U_{q}(\mathfrak{g})} \begin{cases} V_{q}(k\varpi_{1}) & \mathfrak{g}: ABD, \\ \bigoplus_{0 \leq 2\ell \leq k} V_{q}((k-2\ell)\varpi_{1}) & \mathfrak{g}: C. \end{cases}$$

Hence the theorem can be written in a uniform way as

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} L_q((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i,j \leq n}.$$

Corollary

 $\lambda \in P^+$: as above. For every $\mu \in P^+$,

$$\left[L_q(\lambda): V_q(\mu)\right]_{U_q(\mathfrak{g})} = \begin{cases} \sum_{\kappa} c_{2\kappa,\mu}^{\lambda} & \mathfrak{g}: BD, \\ \sum_{\kappa} c_{(2\kappa)',\mu}^{\lambda} & \mathfrak{g}: C. \end{cases}$$

 κ : partitions, $c_{u,v}^{\lambda}$: Littlewood-Richardson coefficients.

Remark. For $k \in \mathbb{Z}_{>0}$, it holds that

$$L_{q}(k\varpi_{1}) \cong_{U_{q}(\mathfrak{g})} \begin{cases} V_{q}(k\varpi_{1}) & \mathfrak{g}: ABD, \\ \bigoplus_{0 \leq 2\ell \leq k} V_{q}((k-2\ell)\varpi_{1}) & \mathfrak{g}: C. \end{cases}$$

Hence the theorem can be written in a uniform way as

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} L_q((\lambda_i - i + j) \varpi_1) \right)_{1 \leq i, j \leq n}.$$

Corollary

 $\lambda \in P^+$: as above. For every $\mu \in P^+$,

$$\left[L_q(\lambda): V_q(\mu)\right]_{U_q(\mathfrak{g})} = \begin{cases} \sum_{\kappa} c_{2\kappa,\mu}^{\lambda} & \mathfrak{g}: BD, \\ \sum_{\kappa} c_{(2\kappa)',\mu}^{\lambda} & \mathfrak{g}: C. \end{cases}$$

 κ : partitions, $c_{\mu,\nu}^{\lambda}$: Littlewood-Richardson coefficients.

Comments on the theorem

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} L_q((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i,j \leq n}.$$

- 1. In [Nakai-Nakanishi, 06], they have conjectured some formulas for q-characters of $L_q(\lambda)$ (q-character $\stackrel{\text{specialize}}{\to}$ character). In fact the specialization of their formula coincides with $\det\left(\operatorname{ch} L_q((\lambda_i-i+j)\varpi_1)\right)_{1\leq i,i\leq n}$.
- 2. In type B, NN conj. has been proven by [Hernandez, 07].
- 3. In type *CD*, NN conj. is still open and the Theorem is a new result.

Comments on the theorem

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} L_q((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i,j \leq n}.$$

- 1. In [Nakai-Nakanishi, 06], they have conjectured some formulas for q-characters of $L_q(\lambda)$ (q-character $\stackrel{\text{specialize}}{\to}$ character). In fact the specialization of their formula coincides with $\det\left(\operatorname{ch} L_q((\lambda_i-i+j)\varpi_1)\right)_{1\leq i,i\leq n}$.
- 2. In type B, NN conj. has been proven by [Hernandez, 07].
- 3. In type *CD*, NN conj. is still open and the Theorem is a new result.

Comments on the theorem

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} L_q((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i,j \leq n}.$$

- 1. In [Nakai-Nakanishi, 06], they have conjectured some formulas for q-characters of $L_q(\lambda)$ (q-character $\stackrel{\text{specialize}}{\to}$ character). In fact the specialization of their formula coincides with $\det\left(\operatorname{ch} L_q((\lambda_i-i+j)\varpi_1)\right)_{1\leq i,i\leq n}$.
- 2. In type B, NN conj. has been proven by [Hernandez, 07].
- 3. In type *CD*, NN conj. is still open and the Theorem is a new result.

Sketch of the proof

Graded limits

$$L_q(\lambda) \colon U_q(\mathcal{L}\mathfrak{g}) ext{-mod.}/\mathbb{C}(q) \stackrel{q o 1}{\longrightarrow} L_1(\lambda) \colon \mathcal{L}\mathfrak{g} ext{-mod.}/\mathbb{C} ext{ (classical limit)}$$
 $\stackrel{\mathsf{restrict}}{\longrightarrow} L_1(\lambda) \colon \mathfrak{g}[t] ext{-module} \quad \left(\mathfrak{g}[t] = \mathfrak{g} \otimes \mathbb{C}[t] \subseteq \mathcal{L}\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]\right)$

$$\rightarrow$$
 Define an auto. τ_a on $\mathfrak{g}[t]$ by $\tau_a(g \otimes f(t)) = g \otimes f(t+a)$

$$L(\lambda) := \tau_a^*(L_1(\lambda))$$
: graded limit of $L_q(\lambda)$ ($\underline{\mathbb{Z}}$ -graded $\mathfrak{g}[t]$ -module)

Remark.
$$\operatorname{ch} L_q(\lambda) = \operatorname{ch} L(\lambda)$$
.

Sketch of the proof

Graded limits

$$L_q(\lambda) \colon U_q(\mathcal{L}\mathfrak{g}) ext{-mod.}/\mathbb{C}(q) \stackrel{q o 1}{\longrightarrow} L_1(\lambda) \colon \mathcal{L}\mathfrak{g} ext{-mod.}/\mathbb{C} ext{ (classical limit)}$$
 $\stackrel{\mathsf{restrict}}{\longrightarrow} L_1(\lambda) \colon \mathfrak{g}[t] ext{-module} \quad \left(\mathfrak{g}[t] = \mathfrak{g}\otimes\mathbb{C}[t] \subseteq \mathcal{L}\mathfrak{g} = \mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\right)$

$$\underline{\mathsf{Fact.}}\ ^\exists a\in\mathbb{C}^\times\ \mathsf{s.t.}\ \big(\mathfrak{g}\otimes(t+a)^{\mathsf{N}}\big)L_1(\lambda)=0 \quad \ (\mathsf{N}\gg 0)$$

$$ightharpoonup$$
 Define an auto. au_a on $\mathfrak{g}[t]$ by $au_aig(g\otimes f(t)ig)=g\otimes f(t+a)$

$$L(\lambda) := \tau_a^*(L_1(\lambda))$$
: graded limit of $L_q(\lambda)$ (\mathbb{Z} -graded $\mathfrak{g}[t]$ -module)

Remark.
$$\operatorname{ch} L_q(\lambda) = \operatorname{ch} L(\lambda)$$
.

 $\mathfrak{g} = \mathfrak{n}_+ \oplus \mathfrak{h} \oplus \mathfrak{n}_-$: triangular decomosition,

Define
$$\Delta'_+ := \{ \alpha \in \Delta_+ \mid \alpha = \sum m_i \alpha_i, \ m_i \leq 1 \} \subseteq \Delta_+.$$

Proposition (N)

Let $M(\lambda)$ be the $\mathfrak{g}[t]$ -module generated by a vector v with relations

$$\mathfrak{n}_+[t]v = 0, \quad (h \otimes t^n)v = \delta_{0,n}\lambda(h)v \text{ for } h \in \mathfrak{h}, \quad f_i^{\lambda(h_i)+1}v = 0,$$

$$(f_\alpha \otimes t)v = 0 \text{ for } \alpha \in \Delta'_+.$$

Then the graded limit $L(\lambda)$ is isomorphic to $M(\lambda)$.

A sketch of the proof of this theorem will be given later.

Proposition (Chari-Greenstein, 11)

$$\sum_{(\lambda,s)\in\Gamma(\mu)}(-1)^s\dim\mathrm{Hom}_{\,\mathfrak{g}}\big(V(\lambda),\bigwedge^s\mathfrak{g}\otimes V(\mu)\big)\mathrm{ch}\, \textit{M}(\lambda)=\mathrm{ch}\, V(\mu),$$

$$\Gamma(\mu) = \{(\lambda, s) \mid \mu = \lambda + \sum_{\alpha \notin \Delta'_+} n_{\alpha} \alpha, \sum n_{\alpha} = s\} \subseteq P^+ \times \mathbb{Z}_{\geq 0}.$$

Proposition (Sam. 14)

Setting
$$H_{\lambda} = \det \left(\operatorname{ch} L_q \left((\lambda_i - i + j) \varpi_1 \right) \right)_{1 \le i, j \le n}$$
,
$$\sum_{(\lambda, s) \in \Gamma(\mu)} (-1)^s \dim \operatorname{Hom}_{\mathfrak{g}} \left(V(\lambda), \bigwedge^s \mathfrak{g} \otimes V(\mu) \right) H_{\lambda} = \operatorname{ch} V(\mu).$$

$$\therefore H_{\lambda} = \operatorname{ch} M(\lambda) = \operatorname{ch} L(\lambda) = \operatorname{ch} L_{\sigma}(\lambda).$$

Proposition (Chari-Greenstein, 11)

$$\sum_{(\lambda,s)\in\Gamma(\mu)}(-1)^s\dim\mathrm{Hom}\,_{\mathfrak{g}}\big(V(\lambda),\bigwedge^s\mathfrak{g}\otimes V(\mu)\big)\mathrm{ch}\, \textit{M}(\lambda)=\mathrm{ch}\, V(\mu),$$

$$\Gamma(\mu) = \{(\lambda, s) \mid \mu = \lambda + \sum_{\alpha \notin \Delta'_{\perp}} n_{\alpha} \alpha, \sum n_{\alpha} = s\} \subseteq P^{+} \times \mathbb{Z}_{\geq 0}.$$

Proposition (Sam, 14)

Setting
$$H_{\lambda} = \det \left(\operatorname{ch} L_q \left((\lambda_i - i + j) \varpi_1 \right) \right)_{1 \leq i, j \leq n}$$
,
$$\sum_{(\lambda, s) \in \Gamma(\mu)} (-1)^s \dim \operatorname{Hom}_{\mathfrak{g}} \left(V(\lambda), \bigwedge^s \mathfrak{g} \otimes V(\mu) \right) H_{\lambda} = \operatorname{ch} V(\mu).$$

$$\therefore H_{\lambda} = \operatorname{ch} M(\lambda) = \operatorname{ch} L(\lambda) = \operatorname{ch} L_{\sigma}(\lambda).$$

Proposition (Chari-Greenstein, 11)

$$\sum_{(\lambda,s)\in\Gamma(\mu)}(-1)^s\dim\mathrm{Hom}_{\,\mathfrak{g}}\big(V(\lambda),\bigwedge^s\mathfrak{g}\otimes V(\mu)\big)\mathrm{ch}\, \textit{M}(\lambda)=\mathrm{ch}\, V(\mu),$$

$$\Gamma(\mu) = \{(\lambda, s) \mid \mu = \lambda + \sum_{\alpha \notin \Delta'_{\perp}} n_{\alpha} \alpha, \sum n_{\alpha} = s\} \subseteq P^{+} \times \mathbb{Z}_{\geq 0}.$$

Proposition (Sam, 14)

Setting
$$H_{\lambda} = \det \left(\operatorname{ch} L_q \left((\lambda_i - i + j) \varpi_1 \right) \right)_{1 \leq i, j \leq n}$$
,
$$\sum_{(\lambda, s) \in \Gamma(\mu)} (-1)^s \dim \operatorname{Hom}_{\mathfrak{g}} \left(V(\lambda), \bigwedge^s \mathfrak{g} \otimes V(\mu) \right) H_{\lambda} = \operatorname{ch} V(\mu).$$

$$\therefore H_{\lambda} = \operatorname{ch} M(\lambda) = \operatorname{ch} L(\lambda) = \operatorname{ch} L_{a}(\lambda).$$

Sketch of the proof for $L(\lambda) \cong M(\lambda)$

 $M(\lambda)$: the $\mathfrak{g}[t]$ -module generated by v with relations

$$\mathfrak{n}_+[t]v = 0, \quad (h \otimes t^n)v = \delta_{0,n}\lambda(h)v \text{ for } h \in \mathfrak{h}, \quad f_i^{\lambda(h_i)+1}v = 0,$$

$$(f_\alpha \otimes t)v = 0 \text{ for } \alpha \in \Delta'_+.$$

$$L(\lambda) \cong M(\lambda) \iff (i) M(\lambda) \Rightarrow L(\lambda), \quad (ii) L(\lambda) \Rightarrow M(\lambda)$$

- (i) can be proved directly.
- (ii) We shall prove

$$L(\lambda)$$
 \rightarrow "generalized Demazure module" \rightarrow $M(\lambda)$.

Sketch of the proof for $L(\lambda) \cong M(\lambda)$

 $M(\lambda)$: the $\mathfrak{g}[t]$ -module generated by v with relations

$$\mathfrak{n}_+[t]v = 0, \quad (h \otimes t^n)v = \delta_{0,n}\lambda(h)v \text{ for } h \in \mathfrak{h}, \quad f_i^{\lambda(h_i)+1}v = 0,$$

$$(f_\alpha \otimes t)v = 0 \text{ for } \alpha \in \Delta'_+.$$

$$L(\lambda) \cong M(\lambda) \iff (i) \ M(\lambda) \twoheadrightarrow L(\lambda), \quad (ii) \ L(\lambda) \twoheadrightarrow M(\lambda)$$

- (i) can be proved directly.
- (ii) We shall prove
 - $L(\lambda)$ \rightarrow "generalized Demazure module" \rightarrow $M(\lambda)$.

Sketch of the proof for $L(\lambda) \cong M(\lambda)$

 $M(\lambda)$: the $\mathfrak{g}[t]$ -module generated by v with relations

$$\mathfrak{n}_+[t]v = 0, \quad (h \otimes t^n)v = \delta_{0,n}\lambda(h)v \text{ for } h \in \mathfrak{h}, \quad f_i^{\lambda(h_i)+1}v = 0,$$

$$(f_\alpha \otimes t)v = 0 \text{ for } \alpha \in \Delta'_+.$$

$$L(\lambda) \cong M(\lambda) \iff (i) \ M(\lambda) \twoheadrightarrow L(\lambda), \quad (ii) \ L(\lambda) \twoheadrightarrow M(\lambda)$$

- (i) can be proved directly.
- (ii) We shall prove
 - $L(\lambda)$ --- "generalized Demazure module" --- $M(\lambda)$.

generalized Demazure module

$$\widehat{\mathfrak{g}}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}K\oplus\mathbb{C}d$$
: affine Lie algebra $\supseteq\mathfrak{g}[t]$

 $\widehat{V}(\Lambda)$: integrable highest weight $\widehat{\mathfrak{g}}$ -module with h.w. Λ

$$\Lambda^1,\ldots,\Lambda^k$$
: dom. int. wts of $\widehat{\mathfrak{g}}, \quad w_1,\ldots,w_k \in \widehat{W}$

 $(v_{w_i\Lambda^i} \in \hat{V}(\Lambda^i)_{w_i\Lambda^i}$: extremal weight vector)

Lemma

For certain sequences $\Lambda^1, \ldots, \Lambda^n$ and w_1, \ldots, w_n , we have

$$L(\lambda) \to D(\Lambda^1, \ldots, \Lambda^n; w_1, \ldots, w_n) \to M(\lambda).$$

generalized Demazure module

$$\widehat{\mathfrak{g}}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}K\oplus\mathbb{C}d$$
: affine Lie algebra $\supseteq\mathfrak{g}[t]$

 $\widehat{V}(\Lambda)$: integrable highest weight $\widehat{\mathfrak{g}}$ -module with h.w. Λ

$$\Lambda^1, \ldots, \Lambda^k$$
: dom. int. wts of $\widehat{\mathfrak{g}}$, $w_1, \ldots, w_k \in \widehat{W}$

$$\rightsquigarrow D(\Lambda^1, \ldots, \Lambda^k; w_1, \ldots, w_k) = \mathfrak{g}[t](v_{w_1}\Lambda^1 \otimes \cdots \otimes v_{w_k}\Lambda^k)$$

$$\subseteq \widehat{V}(\Lambda^1) \otimes \cdots \otimes \widehat{V}(\Lambda^k)$$

 $(v_{w_i\Lambda^i}\in \widehat{V}(\Lambda^i)_{w_i\Lambda^i}$: extremal weight vector)

Lemma

For certain sequences $\Lambda^1, \ldots, \Lambda^n$ and w_1, \ldots, w_n , we have

$$L(\lambda) \to D(\Lambda^1, \ldots, \Lambda^n; w_1, \ldots, w_n) \to M(\lambda)$$

generalized Demazure module

$$\widehat{\mathfrak{g}}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}K\oplus\mathbb{C}d$$
: affine Lie algebra $\supseteq\mathfrak{g}[t]$

 $\widehat{V}(\Lambda)$: integrable highest weight $\widehat{\mathfrak{g}}$ -module with h.w. Λ

$$\Lambda^1, \dots, \Lambda^k$$
: dom. int. wts of $\widehat{\mathfrak{g}}, \quad w_1, \dots, w_k \in \widehat{W}$

$$\rightsquigarrow D(\Lambda^1, \dots, \Lambda^k; w_1, \dots, w_k) = \mathfrak{g}[t](v_{w_1\Lambda^1} \otimes \dots \otimes v_{w_k\Lambda^k})$$

$$\subseteq \widehat{V}(\Lambda^1) \otimes \dots \otimes \widehat{V}(\Lambda^k)$$

 $(v_{w_i\Lambda^i} \in \widehat{V}(\Lambda^i)_{w_i\Lambda^i}$: extremal weight vector)

Lemma

For certain sequences $\Lambda^1, \ldots, \Lambda^n$ and w_1, \ldots, w_n , we have

$$L(\lambda) \twoheadrightarrow D(\Lambda^1, \ldots, \Lambda^n; w_1, \ldots, w_n) \twoheadrightarrow M(\lambda).$$

proof of
$$L(\lambda) \rightarrow D(\Lambda^1, \ldots, \Lambda^n; w_1, \ldots, w_n)$$

$$L_q(\lambda) \hookrightarrow L_q(\mu_1) \otimes \cdots \otimes L_q(\mu_n)$$

$$\stackrel{\mathsf{gr. lim.}}{\leadsto} L(\lambda) \stackrel{\exists \phi}{\to} L(\mu_1) \otimes \cdots \otimes L(\mu_n) \stackrel{\psi}{\hookrightarrow} \widehat{V}(\Lambda^1) \otimes \cdots \otimes \widehat{V}(\Lambda^n)$$

$$(:: L(\mu_i) \hookrightarrow \widehat{V}(\Lambda^i) \text{ for each } i)$$

Check that the image of $\psi \circ \phi$ is $D(\Lambda^1, \ldots, \Lambda^n; w_1, \ldots, w_n)$.

proof of
$$D(\Lambda^1,\ldots,\Lambda^n;w_1,\ldots,w_n) \twoheadrightarrow M(\lambda)$$

We can determine the defining relations of

 $D(\Lambda^1, \ldots, \Lambda^n; w_1, \ldots, w_n)$ by the induction on $\sum_i \ell(w_i)$.

Check that $M(\lambda)$ also satisfies these relations

proof of
$$L(\lambda) \rightarrow D(\Lambda^1, \ldots, \Lambda^n; w_1, \ldots, w_n)$$

$$L_q(\lambda) \hookrightarrow L_q(\mu_1) \otimes \cdots \otimes L_q(\mu_n)$$

$$\overset{\mathsf{gr.\,lim.}}{\leadsto} L(\lambda) \overset{\exists_{\phi}}{\to} L(\mu_1) \otimes \cdots \otimes L(\mu_n) \overset{\psi}{\hookrightarrow} \widehat{V}(\Lambda^1) \otimes \cdots \otimes \widehat{V}(\Lambda^n)$$

$$(\because L(\mu_i) \hookrightarrow \widehat{V}(\Lambda^i) \text{ for each } i)$$

Check that the image of $\psi \circ \phi$ is $D(\Lambda^1, \ldots, \Lambda^n; w_1, \ldots, w_n)$.

proof of
$$D(\Lambda^1,\ldots,\Lambda^n;w_1,\ldots,w_n) \twoheadrightarrow M(\lambda)$$

We can determine the defining relations of

 $D(\Lambda^1, \ldots, \Lambda^n; w_1, \ldots, w_n)$ by the induction on $\sum_i \ell(w_i)$.

Check that $M(\lambda)$ also satisfies these relations.

proof of
$$L(\lambda) \rightarrow D(\Lambda^1, \ldots, \Lambda^n; w_1, \ldots, w_n)$$

$$L_q(\lambda) \hookrightarrow L_q(\mu_1) \otimes \cdots \otimes L_q(\mu_n)$$

$$\overset{\mathsf{gr.\,lim.}}{\leadsto} L(\lambda) \overset{\exists_{\phi}}{\to} L(\mu_1) \otimes \cdots \otimes L(\mu_n) \overset{\psi}{\hookrightarrow} \widehat{V}(\Lambda^1) \otimes \cdots \otimes \widehat{V}(\Lambda^n)$$

$$(\because L(\mu_i) \hookrightarrow \widehat{V}(\Lambda^i) \text{ for each } i)$$

Check that the image of $\psi \circ \phi$ is $D(\Lambda^1, \ldots, \Lambda^n; w_1, \ldots, w_n)$.

proof of
$$D(\Lambda^1,\ldots,\Lambda^n;w_1,\ldots,w_n) \twoheadrightarrow M(\lambda)$$

We can determine the defining relations of

 $D(\Lambda^1,\ldots,\Lambda^n;w_1,\ldots,w_n)$ by the induction on $\sum_i \ell(w_i)$.

Check that $M(\lambda)$ also satisfies these relations

proof of
$$L(\lambda) \rightarrow D(\Lambda^1, \ldots, \Lambda^n; w_1, \ldots, w_n)$$

$$L_q(\lambda) \hookrightarrow L_q(\mu_1) \otimes \cdots \otimes L_q(\mu_n)$$

$$\overset{\mathsf{gr.\,lim.}}{\leadsto} L(\lambda) \overset{\exists_{\phi}}{\to} L(\mu_1) \otimes \cdots \otimes L(\mu_n) \overset{\psi}{\hookrightarrow} \widehat{V}(\Lambda^1) \otimes \cdots \otimes \widehat{V}(\Lambda^n)$$

$$(\because L(\mu_i) \hookrightarrow \widehat{V}(\Lambda^i) \text{ for each } i)$$

Check that the image of $\psi \circ \phi$ is $D(\Lambda^1, \ldots, \Lambda^n; w_1, \ldots, w_n)$.

proof of
$$D(\Lambda^1,\ldots,\Lambda^n;w_1,\ldots,w_n) \twoheadrightarrow M(\lambda)$$

We can determine the defining relations of

$$D(\Lambda^1, \ldots, \Lambda^n; w_1, \ldots, w_n)$$
 by the induction on $\sum_i \ell(w_i)$.

Check that $M(\lambda)$ also satisfies these relations.

