Demazure modules, Demazure crystals and the X = M conjecture

Katsuyuki Naoi

Graduate School of Mathematical Sciences
University of Tokyo

October 11th, 2011

Plan of the talk

- 1. Relations between Demazure crystals and KR crystals.
 - (i) Previous result by Schilling and Tingley.
 - (ii) Main result.
- 2. Application: X=M conjecture for $A_n^{(1)}$ and $oldsymbol{D}_n^{(1)}$
 - (i) What is the X = M conjecture?
 - (ii) The skech of the proof.

Plan of the talk

- 1. Relations between Demazure crystals and KR crystals.
 - (i) Previous result by Schilling and Tingley.
 - (ii) Main result.
- 2. Application: X=M conjecture for $A_n^{(1)}$ and $D_n^{(1)}$
 - (i) What is the X = M conjecture?
 - (ii) The skech of the proof.

Plan of the talk

- 1. Relations between Demazure crystals and KR crystals.
 - (i) Previous result by Schilling and Tingley.
 - (ii) Main result.
- 2. Application: X = M conjecture for $A_n^{(1)}$ and $D_n^{(1)}$.
 - (i) What is the X = M conjecture?
 - (ii) The skech of the proof.

Notation

```
\mathfrak{g}: affine Lie algebra, I=\{0,\ldots,n\},\,I_0=I\setminus\{0\},\, \mathfrak{g}_0\subseteq\mathfrak{g}: simple Lie subalgebra corresponding to I_0,\, W,W_0: Weyl groups, w_0\in W_0: longest element, P^+,P_0^+: sets of dominant integral weights, U_q(\mathfrak{g}),U_q(\mathfrak{g}_0): quantized enveloping algebras, U_q'(\mathfrak{g})\subseteq U_q(\mathfrak{g}): quantum affine algebra without the degree operator,
```

 $\Lambda_i \in P^+$ ($i \in I$): fundamental weights of \mathfrak{g} ,

 $\varpi_i \in P_0^+$ $(i \in I_0)$: fundamental weight of \mathfrak{g}_0 .

 $B(\Lambda)$: crystal basis of the integrable highest weight $U_q(\mathfrak{g})$ -module with highest weight $\Lambda \in P^+$,

 $u_{\Lambda} \subseteq B(\Lambda)$: highest weight element.

Theorem

If finite $U_q'(\mathfrak{g})$ -crystal B is perfect (some technical condition), then we have an isomorphism of $U_q'(\mathfrak{g})$ -crystals

$$B(\Lambda) \otimes B \cong B(\Lambda')$$

for suitable $\Lambda, \Lambda' \in P^+$.

Question: What is the **image of** $u_{\Lambda} \otimes B$ under the above isomorphism?

Answer: Demazure crystal (recalled below)

 $B(\Lambda)$: crystal basis of the integrable highest weight $U_q(\mathfrak{g})$ -module with highest weight $\Lambda \in P^+$, $u_\Lambda \subseteq B(\Lambda)$: highest weight element.

Theorem

If finite $U_q'(\mathfrak{g})$ -crystal B is perfect (some technical condition), then we have an isomorphism of $U_q'(\mathfrak{g})$ -crystals

$$B(\Lambda) \otimes B \cong B(\Lambda')$$

for suitable $\Lambda, \Lambda' \in P^+$.

Question: What is the **image of** $u_{\Lambda} \otimes B$ under the above isomorphism?

Answer: Demazure crystal (recalled below).

 $B(\Lambda)$: crystal basis of the integrable highest weight $U_q(\mathfrak{g})$ -module with highest weight $\Lambda \in P^+$, $u_\Lambda \subseteq B(\Lambda)$: highest weight element.

Theorem

If finite $U_q'(\mathfrak{g})$ -crystal B is perfect (some technical condition), then we have an isomorphism of $U_q'(\mathfrak{g})$ -crystals

$$B(\Lambda) \otimes B \cong B(\Lambda')$$

for suitable $\Lambda, \Lambda' \in P^+$.

Question: What is the **image of** $u_{\Lambda} \otimes B$ under the above isomorphism?

Answer: Demazure crystal (recalled below).

 $B(\Lambda)$: crystal basis of the integrable highest weight $U_q(\mathfrak{g})$ -module with highest weight $\Lambda \in P^+$, $u_\Lambda \subseteq B(\Lambda)$: highest weight element.

Theorem

If finite $U_q'(\mathfrak{g})$ -crystal B is perfect (some technical condition), then we have an isomorphism of $U_q'(\mathfrak{g})$ -crystals

$$B(\Lambda) \otimes B \cong B(\Lambda')$$

for suitable $\Lambda, \Lambda' \in P^+$.

Question: What is the **image of** $u_{\Lambda} \otimes B$ under the above isomorphism?

Answer: Demazure crystal (recalled below).

Kirillov-Reshetikhin crystal

 $W^{r,\ell}$ $(r \in I_0, \ell \in \mathbb{Z}_{>0})$: Kirillov-Reshetikhin (KR) modules : a class of irreducible finite-dimensional $U_q'(\mathfrak{g})$ -modules.

Theorem ([Okado, Schilling], [Fourier, Okado, Schilling]

- (i) If \mathfrak{g} is nonexceptional, $W^{r,\ell}$ has a crystal basis $B^{r,\ell}$ for each r, ℓ ($B^{r,\ell}$: KR crystal).
- (ii) For each $r \in I_0$, $c_r \in \{1,2,3\}$ exists such that

$$B^{r,\ell}$$
 is perfect $\iff \ell \in \mathbb{Z}_{>0}c_r$.

Moreover if $\mathfrak g$ is simply-laced or twisted, then all c_r are 1.

 \Longrightarrow For any sequence $r_1,\ldots,r_p\in I_0$ and $\ell\in\mathbb{Z}_{>0}$ $B^{r_1,c_{r_1}\ell}\otimes\cdots\otimes B^{r_p,c_{r_p}\ell}$ is perfect.

Kirillov-Reshetikhin crystal

 $W^{r,\ell}$ $(r \in I_0, \ell \in \mathbb{Z}_{>0})$: Kirillov-Reshetikhin (KR) modules : a class of irreducible finite-dimensional $U_q'(\mathfrak{g})$ -modules.

Theorem ([Okado, Schilling], [Fourier, Okado, Schilling])

- (i) If \mathfrak{g} is nonexceptional, $W^{r,\ell}$ has a crystal basis $B^{r,\ell}$ for each r, ℓ ($B^{r,\ell}$: KR crystal).
- (ii) For each $r \in I_0$, $c_r \in \{1, 2, 3\}$ exists such that

$$B^{r,\ell}$$
 is perfect $\iff \ell \in \mathbb{Z}_{>0}c_r$.

Moreover if \mathfrak{g} is simply-laced or twisted, then all c_r are 1.

 \Longrightarrow For any sequence $r_1,\ldots,r_p\in I_0$ and $\ell\in\mathbb{Z}_{>0}$ $B^{r_1,c_{r_1}\ell}\otimes\cdots\otimes B^{r_p,c_{r_p}\ell}$ is perfect.

Kirillov-Reshetikhin crystal

 $W^{r,\ell}$ $(r \in I_0, \ell \in \mathbb{Z}_{>0})$: Kirillov-Reshetikhin (KR) modules : a class of irreducible finite-dimensional $U_q'(\mathfrak{g})$ -modules.

Theorem ([Okado, Schilling], [Fourier, Okado, Schilling])

- (i) If \mathfrak{g} is nonexceptional, $W^{r,\ell}$ has a crystal basis $B^{r,\ell}$ for each r, ℓ ($B^{r,\ell}$: KR crystal).
- (ii) For each $r \in I_0$, $c_r \in \{1, 2, 3\}$ exists such that

$$B^{r,\ell}$$
 is perfect $\iff \ell \in \mathbb{Z}_{>0}c_r$.

Moreover if \mathfrak{g} is simply-laced or twisted, then all c_r are 1.

 \Longrightarrow For any sequence $r_1, \ldots, r_p \in I_0$ and $\ell \in \mathbb{Z}_{>0}$, $B^{r_1,c_{r_1}\ell} \otimes \cdots \otimes B^{r_p,c_{r_p}\ell}$ is perfect.

Demazure crystal

For a crystal B, a subset $S \subseteq B$ and $i \in I$, we denote by $F_i(S)$ the subset

$$F_i(S) = \{\tilde{f}_i^k(b) \mid b \in S, k \ge 0\} \setminus \{0\} \subseteq B.$$

Let $w \in W$ with a reduced expression $w = s_{i_k} \cdots s_{i_1}$. It is known that the subset

$$B_w(\Lambda) = F_{i_k} \cdots F_{i_1}(u_\Lambda) \subseteq B(\Lambda)$$

does not depend on the choice of the expression.

Definition (Kashiwara, '93'

 $B_w(\Lambda)$ is called a Demazure crystal.

Demazure crystal

For a crystal B, a subset $S \subseteq B$ and $i \in I$, we denote by $F_i(S)$ the subset

$$F_i(S) = \{\tilde{f}_i^k(b) \mid b \in S, k \geq 0\} \setminus \{0\} \subseteq B.$$

Let $w \in W$ with a reduced expression $w = s_{i_k} \cdots s_{i_1}$. It is known that the subset

$$B_w(\Lambda) = F_{i_k} \cdots F_{i_1}(u_{\Lambda}) \subseteq B(\Lambda)$$

does not depend on the choice of the expression.

Definition (Kashiwara, '93

 $B_w(\Lambda)$ is called a Demazure crystal.

Demazure crystal

For a crystal B, a subset $S \subseteq B$ and $i \in I$, we denote by $F_i(S)$ the subset

$$F_i(S) = \{\tilde{f}_i^k(b) \mid b \in S, k \geq 0\} \setminus \{0\} \subseteq B.$$

Let $w \in W$ with a reduced expression $w = s_{i_k} \cdots s_{i_1}$. It is known that the subset

$$B_w(\Lambda) = F_{i_k} \cdots F_{i_1}(u_{\Lambda}) \subseteq B(\Lambda)$$

does not depend on the choice of the expression.

Definition (Kashiwara, '93)

 $B_w(\Lambda)$ is called a Demazure crystal.

character of Demazure crystal

For a subset *S* of a crystal, we denote its character by

$$\operatorname{ch} S = \sum_{b \in S} e^{\operatorname{wt}(b)} \in \mathbb{Z}[P].$$

Theorem ([Kashiwara])

$$\operatorname{ch} B_{w}(\Lambda) = D_{w}(e^{\Lambda}).$$

If $w = s_{i_k} \cdots s_{i_1}$ is a reduced expression, D_w is defined by $D_w = D_{i_k} \cdots D_{i_1}$ where

$$D_{i}(e^{\Lambda}) = \begin{cases} e^{s_{i}(\Lambda)} + \dots + e^{\Lambda} & \text{if } \langle \Lambda, \alpha_{i}^{\vee} \rangle \geq 0, \\ 0 & \text{if } \langle \Lambda, \alpha_{i}^{\vee} \rangle = -1 \\ -e^{\Lambda + \alpha_{i}} - \dots - e^{s_{i}(\Lambda) - \alpha_{i}} & \text{if } \langle \Lambda, \alpha_{i}^{\vee} \rangle \leq -2 \end{cases}$$

character of Demazure crystal

For a subset *S* of a crystal, we denote its character by

$$\operatorname{ch} S = \sum_{b \in S} e^{\operatorname{wt}(b)} \in \mathbb{Z}[P].$$

Theorem ([Kashiwara])

$$\operatorname{ch} B_{w}(\Lambda) = D_{w}(e^{\Lambda}).$$

If $w = s_{i_k} \cdots s_{i_1}$ is a reduced expression, D_w is defined by $D_w = D_{i_k} \cdots D_{i_1}$ where

$$D_{i}(e^{\Lambda}) = \begin{cases} e^{s_{i}(\Lambda)} + \dots + e^{\Lambda} & \text{if } \langle \Lambda, \alpha_{i}^{\vee} \rangle \geq 0, \\ 0 & \text{if } \langle \Lambda, \alpha_{i}^{\vee} \rangle = -1 \\ -e^{\Lambda + \alpha_{i}} - \dots - e^{s_{i}(\Lambda) - \alpha_{i}} & \text{if } \langle \Lambda, \alpha_{i}^{\vee} \rangle \leq -2 \end{cases}$$

character of Demazure crystal

For a subset S of a crystal, we denote its character by

$$\operatorname{ch} S = \sum_{b \in S} e^{\operatorname{wt}(b)} \in \mathbb{Z}[P].$$

Theorem ([Kashiwara])

$$\operatorname{ch} B_{w}(\Lambda) = D_{w}(e^{\Lambda}).$$

If $w = s_{i_k} \cdots s_{i_1}$ is a reduced expression, D_w is defined by $D_w = D_{i_k} \cdots D_{i_1}$ where

$$D_{i}(e^{\Lambda}) = \begin{cases} e^{s_{i}(\Lambda)} + \cdots + e^{\Lambda} & \text{if } \langle \Lambda, \alpha_{i}^{\vee} \rangle \geq 0, \\ 0 & \text{if } \langle \Lambda, \alpha_{i}^{\vee} \rangle = -1, \\ -e^{\Lambda + \alpha_{i}} - \cdots - e^{s_{i}(\Lambda) - \alpha_{i}} & \text{if } \langle \Lambda, \alpha_{i}^{\vee} \rangle \leq -2. \end{cases}$$

Previous result

Assume that $\mathfrak g$ is nonexceptional. For given $r_1,\ldots,r_p\in I_0$ and $\ell\in\mathbb Z_{>0}$, set

$$B=B^{r_1,c_{r_1}\ell}\otimes\cdots\otimes B^{r_p,c_{r_p}\ell},$$

and let $i \in I$ and $w \in W$ be elements satisfying

$$w\Lambda_i = w_0(c_{r_1}\varpi_{r_1} + \cdots + c_{r_p}\varpi_{r_p}) + \Lambda_0.$$

Then we have $B(\ell\Lambda_0)\otimes B\overset{\sim}{ o} B(\ell\Lambda_i)$ as $U_q'(\mathfrak{g})$ -crystals.

Theorem (Schilling and Tingley, 2011

- (1) The image of $u_{\ell\Lambda_0}\otimes B$ under the above isomorphism is $B_w(\ell\Lambda_i)$.
- (2) The weight of the image of $u_{\ell\Lambda_0}\otimes b$ is equal to $\operatorname{wt}(b)-\delta D(b)$, where $D:B\to\mathbb{Z}$ is the energy function.

Previous result

Assume that \mathfrak{g} is nonexceptional. For given $r_1,\ldots,r_p\in I_0$ and $\ell\in\mathbb{Z}_{>0}$, set

$$B=B^{r_1,c_{r_1}\ell}\otimes\cdots\otimes B^{r_p,c_{r_p}\ell},$$

and let $i \in I$ and $w \in W$ be elements satisfying

$$w\Lambda_i = w_0(c_{r_1}\varpi_{r_1} + \cdots + c_{r_p}\varpi_{r_p}) + \Lambda_0.$$

Then we have $B(\ell\Lambda_0)\otimes B\stackrel{\sim}{\to} B(\ell\Lambda_i)$ as $U_q'(\mathfrak{g})$ -crystals.

Theorem (Schilling and Tingley, 2011)

- (1) The image of $u_{\ell\Lambda_0}\otimes B$ under the above isomorphism is $B_w(\ell\Lambda_i)$.
- (2) The weight of the image of $u_{\ell\Lambda_0}\otimes b$ is equal to $\operatorname{wt}(b)-\delta D(b)$, where $D:B\to\mathbb{Z}$ is the energy function.

Previous result

Assume that \mathfrak{g} is nonexceptional. For given $r_1,\ldots,r_p\in I_0$ and $\ell\in\mathbb{Z}_{>0}$, set

$$B=B^{r_1,c_{r_1}\ell}\otimes\cdots\otimes B^{r_p,c_{r_p}\ell},$$

and let $i \in I$ and $w \in W$ be elements satisfying

$$w\Lambda_i = w_0(c_{r_1}\varpi_{r_1} + \cdots + c_{r_p}\varpi_{r_p}) + \Lambda_0.$$

Then we have $B(\ell\Lambda_0)\otimes B\overset{\sim}{\to} B(\ell\Lambda_i)$ as $U_q'(\mathfrak{g})$ -crystals.

Theorem (Schilling and Tingley, 2011)

- (1) The image of $u_{\ell\Lambda_0} \otimes B$ under the above isomorphism is $B_w(\ell\Lambda_i)$.
- (2) The weight of the image of $u_{\ell\Lambda_0} \otimes b$ is equal to $\operatorname{wt}(b) \delta D(b)$, where $D : B \to \mathbb{Z}$ is the energy function.

Let $\Psi: u_{\ell\Lambda_0} \otimes B \xrightarrow{\sim} B_w(\ell\Lambda_i)$ be the isomorphism. Since $B(\ell\Lambda_i)$ is a $U_q(\mathfrak{g})$ -crystal, for each element $b \in B$ we have $\operatorname{wt}(\Psi(u_{\ell\Lambda_0} \otimes b)) = \lambda + \ell\Lambda_0 + s\delta \in P$ for some $\lambda \in P_0$ and $s \in \mathbb{Z}$ (δ is the null root).

On the other hand since $B(\ell\Lambda_0)\otimes B$ is a $U_q'(\mathfrak{g})$ -crystal, we have

$$\operatorname{wt}(u_{\ell\Lambda_0}\otimes b)=\lambda+\ell\Lambda_0\in P/\mathbb{Z}\delta.$$

$$D(b) = -s$$

Let $\Psi: u_{\ell\Lambda_0} \otimes B \xrightarrow{\sim} B_w(\ell\Lambda_i)$ be the isomorphism. Since $B(\ell\Lambda_i)$ is a $U_q(\mathfrak{g})$ -crystal, for each element $b \in B$ we have $\operatorname{wt}(\Psi(u_{\ell\Lambda_0} \otimes b)) = \lambda + \ell\Lambda_0 + s\delta \in P$ for some $\lambda \in P_0$ and $s \in \mathbb{Z}$ (δ is the null root).

On the other hand since $B(\ell\Lambda_0)\otimes B$ is a $U_q'(\mathfrak{g})$ -crystal, we have

$$\operatorname{wt}(u_{\ell\Lambda_0}\otimes b)=\lambda+\ell\Lambda_0\in P/\mathbb{Z}\delta.$$

$$D(b) = -s$$

Let $\Psi: u_{\ell\Lambda_0} \otimes B \xrightarrow{\sim} B_w(\ell\Lambda_i)$ be the isomorphism. Since $B(\ell\Lambda_i)$ is a $U_q(\mathfrak{g})$ -crystal, for each element $b \in B$ we have $\operatorname{wt}(\Psi(u_{\ell\Lambda_0} \otimes b)) = \lambda + \ell\Lambda_0 + s\delta \in P$ for some $\lambda \in P_0$ and $s \in \mathbb{Z}$ (δ is the null root).

On the other hand since $B(\ell\Lambda_0)\otimes B$ is a $U_q'(\mathfrak{g})$ -crystal, we have

$$\operatorname{wt}(u_{\ell\Lambda_0}\otimes b)=\lambda+\ell\Lambda_0\in P/\mathbb{Z}\delta.$$

$$D(b) = -s$$

Let $\Psi: u_{\ell\Lambda_0} \otimes B \xrightarrow{\sim} B_w(\ell\Lambda_i)$ be the isomorphism. Since $B(\ell\Lambda_i)$ is a $U_q(\mathfrak{g})$ -crystal, for each element $b \in B$ we have $\mathrm{wt}(\Psi(u_{\ell\Lambda_0} \otimes b)) = \lambda + \ell\Lambda_0 + s\delta \in P$ for some $\lambda \in P_0$ and $s \in \mathbb{Z}$ (δ is the null root).

On the other hand since $B(\ell\Lambda_0)\otimes B$ is a $U_q'(\mathfrak{g})$ -crystal, we have

$$\operatorname{wt}(u_{\ell\Lambda_0}\otimes b)=\lambda+\ell\Lambda_0\in P/\mathbb{Z}\delta.$$

$$D(b) = -s$$
.

Definition of the energy function

Proposition (combinatorial *R*-matrix)

For every KR crystals $B_1, B_2, {}^{!\exists}R: B_1 \otimes B_2 \to B_2 \otimes B_1$.

$$\begin{array}{c} \overset{\mathrm{def}}{\Longleftrightarrow} \circ \mathsf{Constant} \ \mathsf{on} \ \mathsf{each} \ U_q(\mathfrak{g}_0)\text{-component,} \\ \circ \mathsf{For} \ b_1 \otimes b_2 \in B_1 \otimes B_2, \ R(b_1 \otimes b_2) = \tilde{b}_2 \otimes \tilde{b}_1, \\ H(e_0(b_1 \otimes b_2)) \\ & = \begin{cases} H(b_1 \otimes b_2) + 1 & e_0(b_1 \otimes b_2) = e_0b_1 \otimes b_1 \\ e_0(\tilde{b}_2 \otimes \tilde{b}_1) = e_0\tilde{b}_2 \otimes \tilde{b}_1 \\ e_0(\tilde{b}_2 \otimes \tilde{b}_1) = \tilde{b}_1 \otimes e_0b_1 \\ e_0(\tilde{b}_2 \otimes \tilde{b}_2) = \tilde{b}_1 \otimes e_0b_2 \end{cases}$$

Definition of the energy function

Proposition (combinatorial *R*-matrix)

For every KR crystals B_1, B_2 , $^{!\exists}R: B_1 \otimes B_2 \xrightarrow{\sim} B_2 \otimes B_1$.

$$egin{aligned} H: B_1 \otimes B_2 &
ightarrow \mathbb{Z} & ext{(local energy function)} \ & \stackrel{ ext{def}}{\Longleftrightarrow} \circ ext{Constant on each } U_q(\mathfrak{g}_0) ext{-component,} \ & \circ ext{For } b_1 \otimes b_2 \in B_1 \otimes B_2, \, R(b_1 \otimes b_2) = ilde{b}_2 \otimes ilde{b}_1, \ & H(e_0(b_1 \otimes b_2)) \ & = egin{cases} H(b_1 \otimes b_2) + 1 & e_0(b_1 \otimes b_2) = e_0b_1 \otimes b_2, \ & e_0(ilde{b}_2 \otimes ilde{b}_1) = e_0 ilde{b}_2 \otimes ilde{b}_1, \ & e_0(ilde{b}_2 \otimes ilde{b}_1) = ilde{b}_2 \otimes e_0 ilde{b}_1, \ & H(b_1 \otimes b_2) & \text{otherwise.} \end{cases}$$

Definition of the energy function

Proposition (combinatorial *R*-matrix)

 $H: B_1 \otimes B_2 \to \mathbb{Z}$ (local energy function)

For every KR crystals B_1, B_2 , ${}^!\exists R : B_1 \otimes B_2 \xrightarrow{\sim} B_2 \otimes B_1$.

$$\stackrel{\text{def}}{\Longleftrightarrow} \circ \text{Constant on each } U_q(\mathfrak{g}_0)\text{-component,}$$

$$\circ \text{ For } b_1 \otimes b_2 \in B_1 \otimes B_2, \, R(b_1 \otimes b_2) = \tilde{b}_2 \otimes \tilde{b}_1,$$

$$H(e_0(b_1 \otimes b_2))$$

$$= \begin{cases} H(b_1 \otimes b_2) + 1 & e_0(b_1 \otimes b_2) = e_0b_1 \otimes b_2, \\ & e_0(\tilde{b}_2 \otimes \tilde{b}_1) = e_0\tilde{b}_2 \otimes \tilde{b}_1, \\ H(b_1 \otimes b_2) - 1 & e_0(b_1 \otimes b_2) = b_1 \otimes e_0b_2, \\ & e_0(\tilde{b}_2 \otimes \tilde{b}_1) = \tilde{b}_2 \otimes e_0\tilde{b}_1, \\ H(b_1 \otimes b_2) & \text{otherwise.} \end{cases}$$

 $\stackrel{\text{def}}{\Longleftrightarrow}$ (1) In the case where $B = B^{r,s}$:

$$D(b) := H(b^{\natural} \otimes b)$$
 for some special element $b^{\natural} \in B$.

(2) In the case where $B = B_1 \otimes \cdots \otimes B_p$:

For $b_1 \otimes \cdots \otimes b_p \in B$ and $1 \leq i \leq j \leq p$, define $b_j^{(i)} \in B_j$ by

$$B_i \otimes B_{i+1} \otimes \cdots \otimes B_j \xrightarrow{\sim} B_j \otimes B_i \otimes \cdots \otimes B_{j-1}$$

 $b_i \otimes b_{i+1} \otimes \cdots \otimes b_j \mapsto b_j^{(i)} \otimes \tilde{b}_i \otimes \cdots \otimes \tilde{b}_{j-1}.$

$$D(b_1 \otimes \cdots \otimes b_p) := \sum_{1 \leq i \leq p} D(b_i^{(1)}) + \sum_{1 \leq i < j \leq p} H(b_i \otimes b_j^{(i+1)})$$

 $\stackrel{\text{def}}{\Longleftrightarrow}$ (1) In the case where $B = B^{r,s}$:

 $D(b) := H(b^{\sharp} \otimes b)$ for some special element $b^{\sharp} \in B$.

(2) In the case where $B = B_1 \otimes \cdots \otimes B_p$:

For $b_1 \otimes \cdots \otimes b_p \in B$ and $1 \leq i \leq j \leq p$, define $b_j^{(i)} \in B_j$ by

$$B_i \otimes B_{i+1} \otimes \cdots \otimes B_j \xrightarrow{\sim} B_j \otimes B_i \otimes \cdots \otimes B_{j-1}$$

 $b_i \otimes b_{i+1} \otimes \cdots \otimes b_j \mapsto b_j^{(i)} \otimes \tilde{b}_i \otimes \cdots \otimes \tilde{b}_{j-1}$

$$D(b_1 \otimes \cdots \otimes b_p) := \sum_{1 \leq i \leq p} D(b_i^{(1)}) + \sum_{1 \leq i < j \leq p} H(b_i \otimes b_j^{(i+1)})$$

 $\stackrel{\text{def}}{\Longleftrightarrow}$ (1) In the case where $B = B^{r,s}$:

 $D(b) := H(b^{\sharp} \otimes b)$ for some special element $b^{\sharp} \in B$.

(2) In the case where $B = B_1 \otimes \cdots \otimes B_p$:

For $b_1 \otimes \cdots \otimes b_p \in B$ and $1 \leq i \leq j \leq p$, define $b_j^{(i)} \in B_j$ by

$$B_i \otimes B_{i+1} \otimes \cdots \otimes B_j \xrightarrow{\sim} B_j \otimes B_i \otimes \cdots \otimes B_{j-1}$$

 $b_i \otimes b_{i+1} \otimes \cdots \otimes b_j \mapsto b_j^{(i)} \otimes \tilde{b}_i \otimes \cdots \otimes \tilde{b}_{j-1}.$

$$D(b_1 \otimes \cdots \otimes b_p) := \sum_{1 \leq i \leq p} D(b_i^{(1)}) + \sum_{1 \leq i < j \leq p} H(b_i \otimes b_j^{(i+1)})$$

 $\stackrel{\text{def}}{\Longleftrightarrow}$ (1) In the case where $B = B^{r,s}$:

 $D(b) := H(b^{\natural} \otimes b)$ for some special element $b^{\natural} \in B$.

(2) In the case where $B = B_1 \otimes \cdots \otimes B_p$:

For $b_1 \otimes \cdots \otimes b_p \in B$ and $1 \leq i \leq j \leq p$, define $b_j^{(i)} \in B_j$ by

$$B_i \otimes B_{i+1} \otimes \cdots \otimes B_j \xrightarrow{\sim} B_j \otimes B_i \otimes \cdots \otimes B_{j-1}$$

 $b_i \otimes b_{i+1} \otimes \cdots \otimes b_j \mapsto b_j^{(i)} \otimes \tilde{b}_i \otimes \cdots \otimes \tilde{b}_{j-1}.$

$$D(b_1 \otimes \cdots \otimes b_p) := \sum_{1 \leq i \leq p} D(b_i^{(1)}) + \sum_{1 \leq i < j \leq p} H(b_i \otimes b_j^{(i+1)}).$$

Rephrase the above theorem

Theorem

Set $B = B^{r_1,c_{r_1}\ell} \otimes \cdots \otimes B^{r_p,c_{r_p}\ell}$, and let $i \in I$ and $w \in W$ be elements such that

$$w(\Lambda_i) = w_0(c_{r_1}\varpi_{r_1} + \cdots + c_{r_p}\varpi_{r_p}) + \Lambda_0.$$

Then there exists an isomorphism of full subgraphs

$$\Psi: u_{\ell\Lambda_0} \otimes B \xrightarrow{\sim} B_w(\ell\Lambda_i)$$

which satisfies

wt
$$\Psi(u_{\ell\Lambda_0} \otimes b) = \operatorname{wt}(b) - \delta D(b)$$
 for $b \in B$

Rephrase the above theorem

Theorem

Set $B = B^{r_1,c_{r_1}\ell} \otimes \cdots \otimes B^{r_p,c_{r_p}\ell}$, and let $i \in I$ and $w \in W$ be elements such that

$$w(\Lambda_i) = w_0(c_{r_1}\varpi_{r_1} + \cdots + c_{r_p}\varpi_{r_p}) + \Lambda_0.$$

Then there exists an isomorphism of full subgraphs

$$\Psi: u_{\ell\Lambda_0} \otimes B \xrightarrow{\sim} B_w(\ell\Lambda_i)$$

which satisfies

wt
$$\Psi(u_{\ell\Lambda_0} \otimes b) = \operatorname{wt}(b) - \delta D(b)$$
 for $b \in B$.

As a consequence of the above theorem, we obtain the following corollary:

Corollary

$$\sum_{b \in B} e^{\operatorname{wt}(b) - \delta D(b)} = \operatorname{ch} B_{w}(\ell \Lambda_{i})$$
$$= D_{w}(e^{\ell \Lambda_{i}}).$$

Goal: Generalize the above results to

$$B = B^{r_1,c_{r_1}\ell_1} \otimes \cdots \otimes B^{r_p,c_{r_p}\ell_p}$$

for arbitrary $\ell_1, \ldots, \ell_p \in \mathbb{Z}_{>0}$.

Since it is not perfect,

$$B(\Lambda) \otimes B \ncong B(\Lambda')$$

for any $\Lambda, \Lambda' \in P^+$.

As a consequence of the above theorem, we obtain the following corollary:

Corollary

$$\sum_{b \in B} e^{\operatorname{wt}(b) - \delta D(b)} = \operatorname{ch} B_{w}(\ell \Lambda_{i})$$
$$= D_{w}(e^{\ell \Lambda_{i}}).$$

Goal: Generalize the above results to

$$B = B^{r_1,c_{r_1}\ell_1} \otimes \cdots \otimes B^{r_p,c_{r_p}\ell_p}$$

for arbitrary $\ell_1, \ldots, \ell_p \in \mathbb{Z}_{>0}$.

Since it is not perfect,

$$B(\Lambda) \otimes B \ncong B(\Lambda')$$

for any $\Lambda, \Lambda' \in P^+$.

As a consequence of the above theorem, we obtain the following corollary:

Corollary

$$\sum_{b \in B} e^{\operatorname{wt}(b) - \delta D(b)} = \operatorname{ch} B_{w}(\ell \Lambda_{i})$$
$$= D_{w}(e^{\ell \Lambda_{i}}).$$

Goal: Generalize the above results to

$$B = B^{r_1,c_{r_1}\ell_1} \otimes \cdots \otimes B^{r_p,c_{r_p}\ell_p}$$

for arbitrary $\ell_1, \ldots, \ell_p \in \mathbb{Z}_{>0}$.

Since it is not perfect,

$$B(\Lambda) \otimes B \not\cong B(\Lambda')$$

for any $\Lambda, \Lambda' \in P^+$.

Main theorem: a generalization of the above result

Assume that ${\mathfrak g}$ is nonexceptional. For simplicity, we also assume that the tensor product

$$B = B^{r_1,c_{r_1}\ell_1} \otimes \cdots \otimes B^{r_p,c_{r_p}\ell_p}$$

satisfies $\ell_1 \geq \cdots \geq \ell_p$. Define $i_1, \ldots, i_p \in I$ and

$$w_p \in W$$
 by the elements satisfying

$$w_1(\Lambda_{i_1}) = c_{r_1}w_0(\varpi_{r_1}) + \Lambda_0,$$

$$w_1w_2(\Lambda_{i_2}) = w_0(c_{r_1}\varpi_{r_1} + c_{r_2}\varpi_{r_2}) + \Lambda_0,$$

$$\vdots$$

$$w_1w_2\cdots w_p(\Lambda_{i_p})=w_0(c_{r_1}\varpi_{r_1}+\cdots+c_{r_p}\varpi_{r_p})+\Lambda_0.$$

Main theorem: a generalization of the above result

Assume that ${\mathfrak g}$ is nonexceptional. For simplicity, we also assume that the tensor product

$$B = B^{r_1,c_{r_1}\ell_1} \otimes \cdots \otimes B^{r_p,c_{r_p}\ell_p}$$

satisfies $\ell_1 \geq \cdots \geq \ell_p$. Define $i_1, \ldots, i_p \in I$ and $w_1, \ldots, w_p \in W$ by the elements satisfying

$$w_{1}(\Lambda_{i_{1}}) = c_{r_{1}}w_{0}(\varpi_{r_{1}}) + \Lambda_{0},$$

$$w_{1}w_{2}(\Lambda_{i_{2}}) = w_{0}(c_{r_{1}}\varpi_{r_{1}} + c_{r_{2}}\varpi_{r_{2}}) + \Lambda_{0},$$

$$\vdots$$

$$w_{1}w_{2}\cdots w_{p}(\Lambda_{i_{p}}) = w_{0}(c_{r_{1}}\varpi_{r_{1}} + \cdots + c_{r_{p}}\varpi_{r_{p}}) + \Lambda_{0}.$$

Define a subset

$$S \subseteq B((\ell_1 - \ell_2)\Lambda_{i_1}) \otimes B((\ell_2 - \ell_3)\Lambda_{i_2}) \otimes \cdots \otimes B(\ell_p\Lambda_{i_p})$$

by

$$S = F_{w_1} \Big(u_{(\ell_1 - \ell_2)\Lambda_{i_1}} \otimes F_{w_2} \big(u_{(\ell_2 - \ell_3)\Lambda_{i_2}} \otimes \cdots \otimes F_{w_p} (u_{\ell_p \Lambda_{i_p}}) \cdots \big) \Big).$$

Theorem (N

There exists an isomorphism of full subgraphs

$$\Psi: u_{\ell_1\Lambda_0} \otimes B^{r_1,c_{r_1}\ell_1} \otimes \cdots \otimes B^{r_p,c_{r_p}\ell_p} \stackrel{\sim}{\to} S$$

which satisfies

wt
$$\Psi(u_{\ell_1 \Lambda_0} \otimes b) = \operatorname{wt}(b) - \delta D(b) \delta$$
 for $b \in B$.

Define a subset

$$S \subseteq B((\ell_1 - \ell_2)\Lambda_{i_1}) \otimes B((\ell_2 - \ell_3)\Lambda_{i_2}) \otimes \cdots \otimes B(\ell_p\Lambda_{i_p})$$

by

$$S = F_{w_1} \Big(u_{(\ell_1 - \ell_2)\Lambda_{i_1}} \otimes F_{w_2} \big(u_{(\ell_2 - \ell_3)\Lambda_{i_2}} \otimes \cdots \otimes F_{w_p} (u_{\ell_p \Lambda_{i_p}}) \cdots \big) \Big).$$

Theorem (N)

There exists an isomorphism of full subgraphs

$$\Psi: u_{\ell_1 \Lambda_0} \otimes B^{r_1, c_{r_1} \ell_1} \otimes \cdots \otimes B^{r_p, c_{r_p} \ell_p} \xrightarrow{\sim} S$$

which satisfies

wt
$$\Psi(u_{\ell_1 \Lambda_0} \otimes b) = \operatorname{wt}(b) - \delta D(b) \delta$$
 for $b \in B$.

Similarly as a Demazure crystal, the character of S is calculated as follows:

Lemma

$$ch S = D_{w_1} \Big(e^{(\ell_1 - \ell_2)\Lambda_{i_1}} \cdot D_{w_2} \Big(e^{(\ell_2 - \ell_3)\Lambda_{i_2}} \cdots D_{w_p} \Big(e^{\ell_p \Lambda_{i_p}} \Big) \cdots \Big) \Big).$$

Hence we have the following corollary:

Corollary

$$\begin{split} \sum_{b \in B} e^{\operatorname{wt}(b) - \delta D(b)} &= \operatorname{ch} S \\ &= D_{w_1} \Big(e^{(\ell_1 - \ell_2)\Lambda_{i_1}} \cdot D_{w_2} \big(e^{(\ell_2 - \ell_3)\Lambda_{i_2}} \cdots D_{w_p} \big(e^{\ell_p \Lambda_{i_p}} \big) \cdots \big) \Big). \end{split}$$

Similarly as a Demazure crystal, the character of S is calculated as follows:

Lemma

$$\operatorname{ch} S = D_{w_1} \Big(e^{(\ell_1 - \ell_2)\Lambda_{i_1}} \cdot D_{w_2} \Big(e^{(\ell_2 - \ell_3)\Lambda_{i_2}} \cdots D_{w_p} \Big(e^{\ell_p \Lambda_{i_p}} \Big) \cdots \Big) \Big).$$

Hence we have the following corollary:

Corollary

$$\sum_{b \in B} e^{\operatorname{wt}(b) - \delta D(b)} = \operatorname{ch} S$$

$$= D_{w_1} \Big(e^{(\ell_1 - \ell_2)\Lambda_{i_1}} \cdot D_{w_2} \Big(e^{(\ell_2 - \ell_3)\Lambda_{i_2}} \cdots D_{w_p} \Big(e^{\ell_p \Lambda_{i_p}} \Big) \cdots \Big) \Big).$$

X = M conjecture

For a tensor product of (not necessarily perfect) KR crystals

$$B=B^{r_1,\ell_1}\otimes\cdots B^{r_p,\ell_p}$$
 and $\mu\in P_0^+,$ we define

$$X(B,\mu,q) = \sum_{b \in B_{\cdot,\mathsf{w}}^{\mathsf{hw}}} q^{D(b)}$$
 (1-dimensional sum),

where B_u^{hw} is a subset of B defined by

$$B_{\mu}^{\text{hw}} = \{b \in B \mid \tilde{e}_i(b) = 0 \text{ for } i \in I_0, \text{wt}(b) = \mu\}.$$

Conjecture (Hatayama, Kuniba, et al. '99

For every $\mu \in P_0^+$, we have

$$X(B, \mu, q) = M(B, \mu, q),$$

where $M(B, \mu, q) \in \mathbb{Z}[q]$ is the fermionic form defined below.

X = M conjecture

For a tensor product of (not necessarily perfect) KR crystals

$$B=B^{r_1,\ell_1}\otimes\cdots B^{r_p,\ell_p}$$
 and $\mu\in P_0^+,$ we define

$$X(B,\mu,q) = \sum_{b \in B_u^{\text{hw}}} q^{D(b)}$$
 (1-dimensional sum),

where B_u^{hw} is a subset of B defined by

$$B_{\mu}^{\text{hw}} = \{b \in B \mid \tilde{e}_i(b) = 0 \text{ for } i \in I_0, \text{wt}(b) = \mu\}.$$

Conjecture (Hatayama, Kuniba, et al. '99)

For every $\mu \in P_0^+$, we have

$$X(B,\mu,q) = M(B,\mu,q),$$

where $M(B, \mu, q) \in \mathbb{Z}[q]$ is the fermionic form defined below.

For simplicity, assume that \mathfrak{g} is of type $A_n^{(1)}, D_n^{(1)}$ or $E_n^{(1)}$.

The fermionic form $M(B, \mu, q)$ is defined as follows:

$$\begin{split} M(B,\mu,q) = \sum_{\substack{m = \{m_u^{(i)} \in \mathbb{Z}_{\geq 0}\}_{i \in I_0, u \geq 1} \\ \text{s.t } p_u^{(i)} \geq 0 \ (\forall i, u), \\ \sum_{i,u} u m_u^{(i)} \alpha_i = \sum_j \ell_j \varpi_{r_j} - \mu}} q^{c(m)} \prod_{i \in I_0, u \geq 1} \begin{bmatrix} p_u^{(i)} + m_u^{(i)} \\ m_u^{(i)} \end{bmatrix}_q, \end{split}$$

where

$$\begin{split} c(m) &= \frac{1}{2} \sum_{\substack{i,j \in I_0 \\ u,v \geq 1}} (\alpha_i,\alpha_j) \min\{u,v\} m_u^{(i)} m_v^{(j)} - \sum_{u \in \mathbb{Z}_{>0}} \min\{\ell_j,u\} m_u^{(r_j)}, \\ p_u^{(i)} &= \sum_{\substack{j \in I_0; r_j = i}} \min\{u,\ell_j\} - \sum_{\substack{j \in I_0 \\ v > 1}} (\alpha_i,\alpha_j) \min\{u,v\} m_j^{(v)}. \end{split}$$

 $(p_u^{(i)})$ is called the vacancy number).

The X = M conjecture has been proved in these cases:

- $\mathfrak{g} = A_n^{(1)}$, [Kirillov, Schilling, Shimozono, 2002],
- g: nonexceptional type, the rank of g is sufficiently large, [Lecouvey, Okado, Shimozono, 2010] and [Okado, Sakamoto, 2010],
- $^{\forall}\mathfrak{g}$, if $\ell_i = 1$ for all i [N],
- Other special cases

The X = M conjecture has been proved in these cases:

- $\mathfrak{g} = A_n^{(1)}$, [Kirillov, Schilling, Shimozono, 2002],
- g: nonexceptional type, the rank of g is sufficiently large, [Lecouvey, Okado, Shimozono, 2010] and [Okado, Sakamoto, 2010],
- $^{\forall}\mathfrak{g}$, if $\ell_i=1$ for all i [N],
- Other special cases

The X = M conjecture has been proved in these cases:

- $\mathfrak{g} = A_n^{(1)}$, [Kirillov, Schilling, Shimozono, 2002],
- g: nonexceptional type, the rank of g is sufficiently large, [Lecouvey, Okado, Shimozono, 2010] and [Okado, Sakamoto, 2010],
- $^{\forall}\mathfrak{g}$, if $\ell_i = 1$ for all i [N],
- Other special cases.

The X = M conjecture has been proved in these cases:

- $\mathfrak{g} = A_n^{(1)}$, [Kirillov, Schilling, Shimozono, 2002],
- g: nonexceptional type, the rank of g is sufficiently large, [Lecouvey, Okado, Shimozono, 2010] and [Okado, Sakamoto, 2010],
- $^{\forall}\mathfrak{g}$, if $\ell_i = 1$ for all i [N],
- Other special cases.

The X = M conjecture has been proved in these cases:

- $\mathfrak{g} = A_n^{(1)}$, [Kirillov, Schilling, Shimozono, 2002],
- g: nonexceptional type, the rank of g is sufficiently large, [Lecouvey, Okado, Shimozono, 2010] and [Okado, Sakamoto, 2010],
- $^{\forall}\mathfrak{g}$, if $\ell_i = 1$ for all i [N],
- Other special cases.

The proof of the X = M conjecture for $A_n^{(1)}$ and $D_n^{(1)}$

For $\mu \in P_0^+$, let $V_0(\mu)$ denote the irreducible \mathfrak{g}_0 -module. In order to prove

$$X(B,\mu,q) = M(B,\mu,q)$$

for every $\mu \in P_0^+$, it suffices to show that

$$\sum_{\mu\in P_0^+}X(B,\mu,q)\mathrm{ch}\ V_0(\mu)=\sum_{\mu\in P_0^+}M(B,\mu,q)\mathrm{ch}\ V_0(\mu)$$

since $\operatorname{ch} V_0(\mu)$ are linearly independent.

By definition, we have

$$\sum_{\mu \in P_0^+} X(B, \mu, q) \operatorname{ch} V_0(\mu) = \sum_{b \in B} q^{D(b)} e^{\operatorname{wt}(b)}.$$

Hence if ${\mathfrak g}$ is nonexceptional, we have from the above corollary that

$$\begin{split} & \sum_{\mu \in P_0^+} X(B, \mu, q) \text{ch } V_0(\mu) \\ & = & D_{w_1} \Big(e^{(\ell_1 - \ell_2) \Lambda_{i_1}} \cdot D_{w_2} \big(e^{(\ell_2 - \ell_3) \Lambda_{i_2}} \cdots D_{w_p} \big(e^{\ell_p \Lambda_{i_p}} \big) \cdots \big) \Big) \end{split}$$

where we set $q = e^{-\delta}$

By definition, we have

$$\sum_{\mu \in P_0^+} X(B,\mu,q) \mathrm{ch} \ V_0(\mu) = \sum_{b \in B} q^{D(b)} e^{\mathrm{wt}(b)}.$$

Hence if $\ensuremath{\mathfrak{g}}$ is nonexceptional, we have from the above corollary that

$$\begin{split} & \sum_{\mu \in P_0^+} X(B, \mu, q) \text{ch } V_0(\mu) \\ &= D_{w_1} \Big(e^{(\ell_1 - \ell_2)\Lambda_{i_1}} \cdot D_{w_2} \big(e^{(\ell_2 - \ell_3)\Lambda_{i_2}} \cdots D_{w_p} (e^{\ell_p \Lambda_{i_p}}) \cdots \big) \Big), \end{split}$$

where we set $q = e^{-\delta}$.

On the other hand, the following theorem can be proved:

Theorem (N)

If $\mathfrak g$ is of type $A_n^{(1)}$, $D_n^{(1)}$ or $E_n^{(1)}$, then we have

$$\begin{split} & \sum_{\mu \in P_0^+} M(B, \mu, q) \text{ch } V_0(\mu) \\ = & D_{w_1} \Big(e^{(\ell_1 - \ell_2)\Lambda_{i_1}} \cdot D_{w_2} \big(e^{(\ell_2 - \ell_3)\Lambda_{i_2}} \cdots D_{w_p} (e^{\ell_p \Lambda_{i_p}}) \cdots \big) \Big), \end{split}$$

where we set $q = e^{-\delta}$.

sketch of the proof.) Let $V(\Lambda)$ denote the irreducible highest weight $U_q(\mathfrak{g})$ -module. We define $\mathcal S$ by the subspace of

$$V((\ell_1 - \ell_2)\Lambda_{i_1}) \otimes V((\ell_2 - \ell_3)\Lambda_{i_2}) \otimes \cdots \otimes V(\ell_p\Lambda_{i_p})$$

corresponding to the subset

$$S = F_{w_1} \Big(u_{(\ell_1 - \ell_2)\Lambda_{i_1}} \otimes F_{w_2} \big(u_{(\ell_2 - \ell_3)\Lambda_{i_2}} \otimes \cdots \otimes F_{w_p} \big(u_{\ell_p\Lambda_{i_p}} \big) \cdots \big) \Big)$$

= $\subseteq B((\ell_1 - \ell_2)\Lambda_{i_1}) \otimes B((\ell_2 - \ell_3)\Lambda_{i_2}) \otimes \cdots \otimes B(\ell_p\Lambda_{i_p}).$

Then the classical limit of ${\mathcal S}$ becomes a ${\mathfrak g}_0\otimes {\mathbb C}[t]$ -module. By construction, we have

$$\mathbf{ch} \, \mathcal{S} = D_{w_1} \Big(e^{(\ell_1 - \ell_2)\Lambda_{i_1}} \cdot D_{w_2} \Big(e^{(\ell_2 - \ell_3)\Lambda_{i_2}} \cdots D_{w_p} \Big(e^{\ell_p \Lambda_{i_p}} \Big) \cdots \Big) \Big).$$

sketch of the proof.) Let $V(\Lambda)$ denote the irreducible highest weight $U_q(\mathfrak{g})$ -module. We define $\mathcal S$ by the subspace of

$$V((\ell_1 - \ell_2)\Lambda_{i_1}) \otimes V((\ell_2 - \ell_3)\Lambda_{i_2}) \otimes \cdots \otimes V(\ell_p\Lambda_{i_p})$$

corresponding to the subset

$$S = F_{w_1} \Big(u_{(\ell_1 - \ell_2)\Lambda_{i_1}} \otimes F_{w_2} \big(u_{(\ell_2 - \ell_3)\Lambda_{i_2}} \otimes \cdots \otimes F_{w_p} \big(u_{\ell_p\Lambda_{i_p}} \big) \cdots \big) \Big)$$

= $\subseteq B((\ell_1 - \ell_2)\Lambda_{i_1}) \otimes B((\ell_2 - \ell_3)\Lambda_{i_2}) \otimes \cdots \otimes B(\ell_p\Lambda_{i_p}).$

Then the classical limit of $\mathcal S$ becomes a $\mathfrak g_0\otimes \mathbb C[t]$ -module. By construction, we have

$$\operatorname{ch} S = D_{w_1} \Big(e^{(\ell_1 - \ell_2)\Lambda_{i_1}} \cdot D_{w_2} \Big(e^{(\ell_2 - \ell_3)\Lambda_{i_2}} \cdots D_{w_p} \Big(e^{\ell_p \Lambda_{i_p}} \Big) \cdots \Big) \Big).$$

On the other hand, it is proved by Di Francesco and Kedem that there exists a $\mathfrak{g}_0\otimes \mathbb{C}[t]$ -module M such that

$$\operatorname{ch} M = \sum_{\mu \in P_0^+} M(B, \mu, q) \operatorname{ch} V_0(\mu).$$

Moreover, we can show that

$$S \cong M$$
.

Hence we have

$$\sum_{\mu\in P_0^+}M(B,\mu,q)\mathrm{ch}\ V_0(\mu)=\mathrm{ch}\ M=\mathrm{ch}\ \mathcal{S} \ = D_{w_1}\Big(e^{(\ell_1-\ell_2)\Lambda_{i_1}}\cdot D_{w_2}(e^{(\ell_2-\ell_3)\Lambda_{i_2}}\cdots D_{w_p}(e^{\ell_p\Lambda_{i_p}})\cdots)\Big).$$

On the other hand, it is proved by Di Francesco and Kedem that there exists a $\mathfrak{g}_0\otimes \mathbb{C}[t]$ -module M such that

$$\operatorname{ch} M = \sum_{\mu \in P_0^+} M(B, \mu, q) \operatorname{ch} V_0(\mu).$$

Moreover, we can show that

$$S \cong M$$
.

Hence we have

$$\sum_{\mu \in P_0^+} M(B, \mu, q) \operatorname{ch} V_0(\mu) = \operatorname{ch} M = \operatorname{ch} S$$
 $= D_{w_1} \Big(e^{(\ell_1 - \ell_2)\Lambda_{i_1}} \cdot D_{w_2} (e^{(\ell_2 - \ell_3)\Lambda_{i_2}} \cdots D_{w_p} (e^{\ell_p \Lambda_{i_p}}) \cdots) \Big).$

On the other hand, it is proved by Di Francesco and Kedem that there exists a $\mathfrak{g}_0\otimes \mathbb{C}[t]$ -module M such that

$$\operatorname{ch} M = \sum_{\mu \in P_0^+} M(B, \mu, q) \operatorname{ch} V_0(\mu).$$

Moreover, we can show that

$$S \cong M$$
.

Hence we have

$$\begin{split} & \sum_{\mu \in P_0^+} M(B, \mu, q) \text{ch } V_0(\mu) = \text{ch } M = \text{ch } \mathcal{S} \\ & = & D_{w_1} \Big(e^{(\ell_1 - \ell_2)\Lambda_{i_1}} \cdot D_{w_2} \big(e^{(\ell_2 - \ell_3)\Lambda_{i_2}} \cdots D_{w_p} (e^{\ell_p \Lambda_{i_p}}) \cdots \big) \Big). \quad \Box \end{split}$$

As a consequence, we have:

Corollary

If \mathfrak{g} is $A_n^{(1)}$ or $D_n^{(1)}$, then we have that

$$\sum_{\mu \in P_0^+} X(B,\mu,q) \mathrm{ch} \ V_0(\mu) = \sum_{\mu \in P_0^+} M(B,\mu,q) \mathrm{ch} \ V_0(\mu).$$

Hence the X = M conjecture holds in this case.