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Introduction

Jacobi-Trudi formula | For a partition A = (A > -+ > \,),

S)\(X) = det (h)‘f_’.'i'j(x))lgi,jgn‘

sx(x): Schur polynomial, hx(x): complete symm. polynomial.
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sx(x): Schur polynomial, hx(x): complete symm. polynomial.

Translation in the sl,,;-modules

A€ Pt dom.int. wt~> A= (A >--->),) by \; = Zk2,<hk,/\)
ch V(A) = sy(x), ch V(kwy) = he(x) (V(\): simple sl,;1-mod.)
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Introduction

Jacobi-Trudi formula | For a partition A = (A > -+ > \,),

S)\(X) = det (h)‘f_’.'i'j(x))lgi,jgn‘

sx(x): Schur polynomial, hx(x): complete symm. polynomial.

Translation in the sl,,;-modules

A€ Pt dom.int. wt~> A= (A >--->),) by \; = Zk2,<hk,/\)
ch V(A) = sy(x), ch V(kwy) = he(x) (V(\): simple sl,;1-mod.)

ch V() = det (ch V(N — i+ j)wl))

1<ij<n
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So ch V()) = det <ch V(- i+ j)w1)> holds in type A.

1<ij<n

Q. Does this formula hold in other types?

Katsuyuki Naoi (TUAT) Minimal affinizations and graded limits



So ch V()) = det <ch V(- i+ j)w1)> holds in type A.

1<ij<n
Q. Does this formula hold in other types? No!

ch V(N) # det (ch V(A = i +j)m1))

b
1<ij<n

when g # sl,,1 (though there may be several generalizations.)
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So ch V()) = det <ch V(- i+ j)w1)> holds in type A.

1<ij<n
Q. Does this formula hold in other types? No!

ch V(N) # det (ch V(A = i +j)m1))

b
1<ij<n

when g # sl,,1 (though there may be several generalizations.)

Q. When g # sl,,1, does det (ch V(()\; — i+j)w1))

1<ij<n

have some representation theoretic meaning?
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In type BD, we have

ch Ly() = det (ch V(A — i+ j)1))

1<ij<n’
where L,()\) denotes a minimal affinization (a special class of

f.d. simple U,(Lg)-modules explained later).
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In type BD, we have

ch Ly() = det (ch V(A — i+ j)1))

1<ij<n’
where L,()\) denotes a minimal affinization (a special class of

f.d. simple U,(Lg)-modules explained later).

In type C, a similar formula holds:

chilg(N) =det( D chV((\—i+j-2K)m))

0<2k< \i—i+j

1<ij<n
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1. Definition of minimal affinizations Lq(\)
2. Main Theorem (JT formula for ch Ly()))

3. Proof (Combination of results proved by
[N], [Chari-Greenstein], [Sam])
In the proof, graded limits (Z-graded g ® C[t]-modules) are used.
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1. Definition of minimal affinizations Lq(\)
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Minimal affinization

g: simple Lie algebra of rank n,

Lg = g® C[t, t71]: loop algebra, ([x Rf,y®gl=[xy]® fg)

Uq(Lg): quantum loop algebra/C(q) (g-analog of U(Lg))
U

Uq(g): quantum group assoc. with g (g-analog of U(g))
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Minimal affinization

g: simple Lie algebra of rank n,
Lg=g®C[t, t']: loop algebra, ([x®f,y®g]=[x,y]®fg)

Uq(Lg): quantum loop algebra/C(q) (g-analog of U(Lg))
U

Uq(g): quantum group assoc. with g (g-analog of U(g))

Fact (f.d. U,(g)-modules)

(1) {f.d. simple g-mod.} &L pr {f.d. simple U,(g)-mod}
w w w

V(A) A V4 ()
(2) The cat. of f.d. g-modules and U,(g)-modules are semisimple.
(3) ch V(X)) = ch V,(N).
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Minimal affinization

Fact. V: an arbitrary f.d. simple U,(Lg)-module
wINePTst VEV (N e@,., V,(1)®™() as a U,(g)-module.

In this case, V is called an affinization of V().

Katsuyuki Naoi (TUAT) Minimal affinizations and graded limits



Minimal affinization

Fact. V: an arbitrary f.d. simple U,(Lg)-module
wINePTst VEV (N e@,., V,(1)®™() as a U,(g)-module.

In this case, V is called an affinization of V().

{ Uy(g)-isom. classes of affiniz. of V(\)}
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Minimal affinization

Fact. V: an arbitrary f.d. simple U,(Lg)-module
wINePTst VEV (N e@,., V,(1)®™() as a U,(g)-module.

In this case, V is called an affinization of V().
{ Uy(g)-isom. classes of affiniz. of V,(\)} < partial order is defined

([V]= W] & {mu(V)}M > {mu(W)}u w.r.t. lexicographic order)
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Minimal affinization

Fact. V: an arbitrary f.d. simple U,(Lg)-module

wINePTst VEV (N e@,., V,(1)®™() as a U,(g)-module.
In this case, V is called an affinization of V().

{ Uy(g)-isom. classes of affiniz. of V,(\)} < partial order is defined
(V1= W] & {m.(V)}, = {mu(W)} , w.rt. lexicographic order)

Definition
V: minimal affinization of V,(\)

€ 5 V is an affinization of V()

o the isom. class of V is minimal among affiniz. of V().
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Examples of Minimal affinizations

Minimal affinizations for g = sl

When g = sl,,1, “alg. hom. ¢: U,(Lg) — U,(g) (evaluation map)
(g-analog of the map Lg — g: x ® f — f(a)x for any a € C*)
~ p*V4(A): simple Uy(Lg)-mod.
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Examples of Minimal affinizations

Minimal affinizations for g = sl

When g = sl,,1, “alg. hom. ¢: U,(Lg) — U,(g) (evaluation map)

(g-analog of the map Lg — g: x ® f — f(a)x for any a € C*)

~ p* Vg (A): simple Uy(Lg)-mod. <= minimal affinization of V(1))
(" * V(N = V4(A) as a Uy(g)-mod.)

Remark. If g # sl,,1, evaluation map does not exist.

~> Most of minimal affinizations are reducible as a U,(g)-module,

and it is not easy to determine the decompositions or characters.
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Examples of Minimal affinizations

Minimal affinizations for g = sl

When g = sl,,1, “alg. hom. ¢: U,(Lg) — U,(g) (evaluation map)

(g-analog of the map Lg — g: x ® f — f(a)x for any a € C*)

~ p* Vg (A): simple Uy(Lg)-mod. <= minimal affinization of V(1))
(" * V(N = V4(A) as a Uy(g)-mod.)

Remark. If g # sl,,1, evaluation map does not exist.

~> Most of minimal affinizations are reducible as a U,(g)-module,

and it is not easy to determine the decompositions or characters.

Another example

Kirillov-Reshetikhin modules
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Examples of Minimal affinizations

Minimal affinizations for g = sl

When g = sl,,1, “alg. hom. ¢: U,(Lg) — U,(g) (evaluation map)

(g-analog of the map Lg — g: x ® f — f(a)x for any a € C*)

~ p* Vg (A): simple Uy(Lg)-mod. <= minimal affinization of V(1))
(" * V(N = V4(A) as a Uy(g)-mod.)

Remark. If g # sl,,1, evaluation map does not exist.

~> Most of minimal affinizations are reducible as a U,(g)-module,

and it is not easy to determine the decompositions or characters.

Another example

Kirillov-Reshetikhin modules = minimal affinizations of V,(mw;)
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In the sequel, assume that g is of type ABCD.
Let A € PT, and let Ly(\) be a minimal affinization of V,(\).
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Main Theorem

In the sequel, assume that g is of type ABCD.
Let A € PT, and let Ly(\) be a minimal affinization of V,(\).

Theorem

(hpy A) =0 if g: type BC,
(An-1,A) = (hn, \) =0 if g: type D,
and set \; ;= Zkz,.(hk, A) € Zsq for 1 < i < n. Then we have
ch Ly(N)
det (ch V(A — i + j)m1)) g: ABD

1<ij<n

Assume that {

det (Socnar 10 V(i—i+j=20)m)) g C

1<ij<n
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Main Theorem

In the sequel, assume that g is of type ABCD.
Let A € PT, and let Ly(\) be a minimal affinization of V,(\).

Theorem

(hpy A) =0 if g: type BC,
(hn-1,A) = (ho, \) =0 if g: type D,
and set \; ;= Zkz,.(hk, A) € Zsq for 1 < i < n. Then we have
ch Ly(A) = ch V()
det (ch V(A — i + )1)) g: ABD

1<ij<n

det (Socner 10, V(i —i+j=20)m)) g C

1<ij<n

Assume that {

Remark. In type A, this is JT formula since ch L,(\) = ch V().
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Remark. For k € Z~, it holds that

Va (ko) g: ABD,
Do<or<k Vq((k - 25)731) g: C.

Hence the theorem can be written in a uniform way as

Lq(kwl) = Uq(a) {

ch Ly(\) = det (ch Lo((Ni — i+j)w1)>

1<ij<n
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The multiplicity formula can be deduced from the theorem.

Corollary

A € P*: as above. For every i € PT,

> G, g: BD,
[La): V()] =g e
Uq(g) ZI{ C(2'i)/7/"/ g C

K: partitions, Cﬁ\,u: Littlewood-Richardson coefficients.
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Comments on the theorem

det (ch V(A — i + j)w1)>1<ij<n . ABD

det ( Cocarn,iojch V(A — i +j = 20)1)) . C

1<ij<n

ch Ly(N) =

1. In [Nakai-Nakanishi, 06], they have conjectured some formulas

specialize

for g-characters of L,(\) (g-character ™ =" character).
In fact the specialization of their formula coincides with

the r.h.s. of the theorem.
2. In type B, NN conj. has been proven by [Hernandez, 07].

3. In type CD, NN conj. is still open and the theorem is a new

result.
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Sketch of the proof

Graded limits

g—1

Ly(N): Uqg(Lg)-mod./C(q) — Li(N): Lg-mod./C (classical limit)

S 1(A): gltl-module  (gt] = 6 C[t] € Lg =g @ C[t, t1])
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Sketch of the proof

Graded limits

g—1

Ly(N): Uqg(Lg)-mod./C(q) — Li(N): Lg-mod./C (classical limit)
"= 15 (\): glt]-module  (g[t] = g ® C[t] C Lg = g @ C[t, t71])

Fact. Tae C* st. (g@ (t+a)V)Li(A\)=0 (N> 0)
~~ Define an auto. 7, on g[t] by 7,(g @ f(t)) = g @ f(t + a)

L(A) := 72 (L1(N)): graded limit of Ly())
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Sketch of the proof

Graded limits

g—1

Ly(N): Uqg(Lg)-mod./C(q) — Li(N): Lg-mod./C (classical limit)
"= 15 (\): glt]-module  (g[t] = g ® C[t] C Lg = g @ C[t, t71])

Fact. Tae C* st. (g@ (t+a)V)Li(A\)=0 (N> 0)
~~ Define an auto. 7, on g[t] by 7,(g @ f(t)) = g @ f(t + a)

L(X) := 72 (L1()\)): graded limit of Ly(\) (Z-graded g[t]-module)

Remark. ch Ly(A\) = ch L(\).
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g=n,. P bhedn_: triangular decomosition,
Define A, :={a e AL |a=) mia;, m <1} CA,.
Proposition (N)

Let M()\) be the g[t]-module generated by a vector v with relations

n[tlv =0, (h®t")v =2dg.A(h)vfor heh, £y =0
(fa®@t)yv =0 for a € A,

)

Then the graded limit L(\) is isomorphic to M(\).
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Proposition (Chari-Greenstein, 11)

> (=1)*dimHom,(V(A), \ g ® V(1)) ch M(\) = ch V(u),
(\s)er (1)

r(,U,) = {()‘75) | H = /\+ZQ¢A; es Z”a = 5} C Pt x ZEO-
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Proposition (Chari-Greenstein, 11)

> (~1)*dimHomg(V(}), /\ g ® V(u))ch M(X) = ch V(p),
(\.s) ()

M) ={(X9) [ = A+ X agar Mat, 3200 = s} C PT X Zx.

N

Proposition (Sam, 14)

Setting Hy = (r.h.s of the main theorem),

Z (—1)°dim Hom 4 (V/()), /\g ® V() Hy = ch V(p).

(Ass)el(w)

v
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Proposition (Chari-Greenstein, 11)

> (~1)*dimHomg(V(}), /\ g ® V(u))ch M(X) = ch V(p),
(\.s) ()

M) ={(X9) [ = A+ X agar Mat, 3200 = s} C PT X Zx.

N

Proposition (Sam, 14)

Setting Hy = (r.h.s of the main theorem),

Z (—1)°dim Hom 4 (V/()), /\g ® V() Hy = ch V(p).

(Ass)el(w)

v

. Hy = ch M())
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Proposition (Chari-Greenstein, 11)

> (~1)*dimHomg(V(}), /\ g ® V(u))ch M(X) = ch V(p),
(\.s) ()

M) ={(X9) [ = A+ X agar Mat, 3200 = s} C PT X Zx.

N

Proposition (Sam, 14)

Setting Hy = (r.h.s of the main theorem),

Z (—1)°dim Hom 4 (V/()), /\g ® V() Hy = ch V(p).

(Ass)el(w)

v

. Hy = ch M(\) = ch L(}\)
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Proposition (Chari-Greenstein, 11)

> (~1)*dimHomg(V(}), /\ g ® V(u))ch M(X) = ch V(p),
(\.s) ()

M) ={(X9) [ = A+ X agar Mat, 3200 = s} C PT X Zx.

N

Proposition (Sam, 14)

Setting Hy = (r.h.s of the main theorem),

Z (—1)°dim Hom 4 (V/()), /\g ® V() Hy = ch V(p).

(Ass)el(w)

v

. Hy = ch M(A) = ch L(A) = ch Lg()).
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Comment on exceptional types

It would be possible to study minimal affinizations in exceptional types

using their graded limits.
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Comment on exceptional types

It would be possible to study minimal affinizations in exceptional types
using their graded limits. Indeed, recently we obtain the following

polyhedral multiplicity formula for minimal affinizations of type Go:

Lq(kwl + /’W2) %Uq(g)

@ Vo((k — a1+ a3 + as — as)w1 + (I — a2 — 3a3 — 3as)w2)
(317"'735)65(1(,/)

where

S(k,/) = {(al,...,ag,) S Z;O ‘31 <k, a1 —a3+ a5 <k,
Dap + 3a3 +3a5 < |, 2ay + 334 + 3as < /}.

(joint work with Jian-Rong Li in Lanzhou University)
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